cmckinle commited on
Commit
050a6c5
1 Parent(s): 46a0a15

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +219 -60
app.py CHANGED
@@ -1,98 +1,257 @@
1
  import gradio as gr
2
  import torch
3
- from transformers import AutoFeatureExtractor, AutoModelForImageClassification
 
 
4
  from numpy import exp
5
- import pandas as pd
6
  from PIL import Image
7
  import urllib.request
8
  import uuid
 
9
 
10
- uid = uuid.uuid4()
11
- models = [
12
  "cmckinle/sdxl-flux-detector",
13
  "umm-maybe/AI-image-detector",
14
  "Organika/sdxl-detector",
 
15
  ]
16
- results_store = []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
  def softmax(vector):
19
- e = exp(vector)
20
- return e / e.sum()
21
 
22
- def aiornot(image, model_index):
23
- model_index = int(model_index) # Convert to integer
24
- mod = models[model_index]
25
- feature_extractor = AutoFeatureExtractor.from_pretrained(mod)
26
- model = AutoModelForImageClassification.from_pretrained(mod)
27
- input = feature_extractor(image, return_tensors="pt")
 
 
28
  with torch.no_grad():
29
- outputs = model(**input)
30
  logits = outputs.logits
31
  probability = softmax(logits)
32
  px = pd.DataFrame(probability.numpy())
33
-
34
- if model_index == 2: # Organika model
35
- real_prob, ai_prob = px[0][0], px[1][0]
36
- label = "Real" if real_prob > ai_prob else "AI"
37
- else:
38
- ai_prob, real_prob = px[0][0], px[1][0]
39
- label = "AI" if ai_prob > real_prob else "Real"
40
-
41
  html_out = f"""
42
  <h1>This image is likely: {label}</h1><br><h3>
43
- Probabilities:<br>
44
- Real: {real_prob:.4f}<br>
45
- AI: {ai_prob:.4f}"""
46
-
47
- results = {"Real": real_prob, "AI": ai_prob}
48
- results_store.append(results)
49
- return gr.HTML.update(html_out), results
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
  def load_url(url):
52
  try:
53
- urllib.request.urlretrieve(f'{url}', f"{uid}tmp_im.png")
 
 
54
  image = Image.open(f"{uid}tmp_im.png")
55
  mes = "Image Loaded"
56
  except Exception as e:
57
- image = None
58
- mes = f"Image not Found<br>Error: {e}"
59
- return image, mes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
 
61
- def calculate_final_prob():
62
- if not results_store:
63
- return {"Real": "N/A", "AI": "N/A"}
64
- fin_out = sum(result["Real"] for result in results_store) / len(results_store)
65
- return {
66
- "Real": f"{fin_out:.4f}",
67
- "AI": f"{1 - fin_out:.4f}"
68
- }
69
 
70
- def clear_results():
71
- results_store.clear()
72
- return gr.HTML.update(value=""), gr.Label.update(value=None)
 
 
73
 
 
74
  with gr.Blocks() as app:
75
- gr.Markdown("""<center><h1>AI Image Detector<br><h4>(Test Demo - accuracy varies by model)</h4></center>""")
76
  with gr.Column():
77
  inp = gr.Image(type='pil')
78
- in_url = gr.Textbox(label="Image URL")
79
  with gr.Row():
80
- load_btn = gr.Button("Load URL")
81
  btn = gr.Button("Detect AI")
82
- mes = gr.HTML()
83
- with gr.Group():
 
 
 
 
 
 
 
 
 
 
 
 
 
84
  with gr.Row():
85
- fin = gr.Label(label="Final Probability")
 
 
 
 
 
 
 
 
86
  with gr.Row():
87
- for i, model in enumerate(models):
88
- with gr.Column():
89
- gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{model}'>{model}</a></b>""")
90
- output_html = gr.HTML()
91
- output_label = gr.Label(label="Output")
92
- btn.click(aiornot, inputs=[inp, gr.Number(value=i, visible=False)], outputs=[output_html, output_label])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
 
94
- btn.click(clear_results, outputs=[output_html, output_label], queue=False)
95
- btn.click(calculate_final_prob, outputs=fin)
96
- load_btn.click(load_url, in_url, [inp, mes])
97
 
98
- app.launch(show_api=False, max_threads=24)
 
1
  import gradio as gr
2
  import torch
3
+ from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
4
+ #from transformers import pipeline
5
+ import os
6
  from numpy import exp
7
+ import pandas as pd
8
  from PIL import Image
9
  import urllib.request
10
  import uuid
11
+ uid=uuid.uuid4()
12
 
13
+ models=[
 
14
  "cmckinle/sdxl-flux-detector",
15
  "umm-maybe/AI-image-detector",
16
  "Organika/sdxl-detector",
17
+ #"arnolfokam/ai-generated-image-detector",
18
  ]
19
+
20
+ pipe0 = pipeline("image-classification", f"{models[0]}")
21
+ pipe1 = pipeline("image-classification", f"{models[1]}")
22
+ pipe2 = pipeline("image-classification", f"{models[2]}")
23
+
24
+
25
+ fin_sum=[]
26
+ def image_classifier0(image):
27
+ labels = ["AI","Real"]
28
+ outputs = pipe0(image)
29
+ results = {}
30
+ result_test={}
31
+ for idx,result in enumerate(outputs):
32
+ results[labels[idx]] = outputs[idx]['score']
33
+ #print (result_test)
34
+ #for result in outputs:
35
+ # results[result['label']] = result['score']
36
+ #print (results)
37
+ fin_sum.append(results)
38
+ return results
39
+ def image_classifier1(image):
40
+ labels = ["AI","Real"]
41
+ outputs = pipe1(image)
42
+ results = {}
43
+ result_test={}
44
+ for idx,result in enumerate(outputs):
45
+ results[labels[idx]] = outputs[idx]['score']
46
+ #print (result_test)
47
+ #for result in outputs:
48
+ # results[result['label']] = result['score']
49
+ #print (results)
50
+ fin_sum.append(results)
51
+ return results
52
+ def image_classifier2(image):
53
+ labels = ["AI","Real"]
54
+ outputs = pipe2(image)
55
+ results = {}
56
+ result_test={}
57
+ for idx,result in enumerate(outputs):
58
+ results[labels[idx]] = outputs[idx]['score']
59
+ #print (result_test)
60
+ #for result in outputs:
61
+ # results[result['label']] = result['score']
62
+ #print (results)
63
+ fin_sum.append(results)
64
+ return results
65
 
66
  def softmax(vector):
67
+ e = exp(vector)
68
+ return e / e.sum()
69
 
70
+
71
+
72
+ def aiornot0(image):
73
+ labels = ["AI", "Real"]
74
+ mod=models[0]
75
+ feature_extractor0 = AutoFeatureExtractor.from_pretrained(mod)
76
+ model0 = AutoModelForImageClassification.from_pretrained(mod)
77
+ input = feature_extractor0(image, return_tensors="pt")
78
  with torch.no_grad():
79
+ outputs = model0(**input)
80
  logits = outputs.logits
81
  probability = softmax(logits)
82
  px = pd.DataFrame(probability.numpy())
83
+ prediction = logits.argmax(-1).item()
84
+ label = labels[prediction]
 
 
 
 
 
 
85
  html_out = f"""
86
  <h1>This image is likely: {label}</h1><br><h3>
87
+
88
+ Probabilites:<br>
89
+ Real: {px[1][0]}<br>
90
+ AI: {px[0][0]}"""
91
+ results = {}
92
+ for idx,result in enumerate(px):
93
+ results[labels[idx]] = px[idx][0]
94
+ #results[labels['label']] = result['score']
95
+ fin_sum.append(results)
96
+ return gr.HTML.update(html_out),results
97
+ def aiornot1(image):
98
+ labels = ["AI", "Real"]
99
+ mod=models[1]
100
+ feature_extractor1 = AutoFeatureExtractor.from_pretrained(mod)
101
+ model1 = AutoModelForImageClassification.from_pretrained(mod)
102
+ input = feature_extractor1(image, return_tensors="pt")
103
+ with torch.no_grad():
104
+ outputs = model1(**input)
105
+ logits = outputs.logits
106
+ probability = softmax(logits)
107
+ px = pd.DataFrame(probability.numpy())
108
+ prediction = logits.argmax(-1).item()
109
+ label = labels[prediction]
110
+ html_out = f"""
111
+ <h1>This image is likely: {label}</h1><br><h3>
112
+
113
+ Probabilites:<br>
114
+ Real: {px[1][0]}<br>
115
+ AI: {px[0][0]}"""
116
+ results = {}
117
+ for idx,result in enumerate(px):
118
+ results[labels[idx]] = px[idx][0]
119
+ #results[labels['label']] = result['score']
120
+ fin_sum.append(results)
121
+ return gr.HTML.update(html_out),results
122
+ def aiornot2(image):
123
+ labels = ["Real", "AI"]
124
+ mod=models[2]
125
+ feature_extractor2 = AutoFeatureExtractor.from_pretrained(mod)
126
+ #feature_extractor2 = AutoFeatureExtractor.from_pretrained("microsoft/resnet-50")
127
+ model2 = AutoModelForImageClassification.from_pretrained(mod)
128
+ input = feature_extractor2(image, return_tensors="pt")
129
+ with torch.no_grad():
130
+ outputs = model2(**input)
131
+ logits = outputs.logits
132
+ probability = softmax(logits)
133
+ px = pd.DataFrame(probability.numpy())
134
+ prediction = logits.argmax(-1).item()
135
+ label = labels[prediction]
136
+ html_out = f"""
137
+ <h1>This image is likely: {label}</h1><br><h3>
138
+
139
+ Probabilites:<br>
140
+ Real: {px[0][0]}<br>
141
+ AI: {px[1][0]}"""
142
+
143
+ results = {}
144
+ for idx,result in enumerate(px):
145
+ results[labels[idx]] = px[idx][0]
146
+ #results[labels['label']] = result['score']
147
+ fin_sum.append(results)
148
+
149
+ return gr.HTML.update(html_out),results
150
 
151
  def load_url(url):
152
  try:
153
+ urllib.request.urlretrieve(
154
+ f'{url}',
155
+ f"{uid}tmp_im.png")
156
  image = Image.open(f"{uid}tmp_im.png")
157
  mes = "Image Loaded"
158
  except Exception as e:
159
+ image=None
160
+ mes=f"Image not Found<br>Error: {e}"
161
+ return image,mes
162
+
163
+ def tot_prob():
164
+ try:
165
+ fin_out = fin_sum[0]["Real"]+fin_sum[1]["Real"]+fin_sum[2]["Real"]+fin_sum[3]["Real"]+fin_sum[4]["Real"]+fin_sum[5]["Real"]
166
+ fin_out = fin_out/6
167
+ fin_sub = 1-fin_out
168
+ out={
169
+ "Real":f"{fin_out}",
170
+ "AI":f"{fin_sub}"
171
+ }
172
+ #fin_sum.clear()
173
+ #print (fin_out)
174
+ return out
175
+ except Exception as e:
176
+ pass
177
+ print (e)
178
+ return None
179
+ def fin_clear():
180
+ fin_sum.clear()
181
+ return None
182
 
183
+ def upd(image):
184
+ print (image)
185
+ rand_im = uuid.uuid4()
186
+ image.save(f"{rand_im}-vid_tmp_proc.png")
187
+ out = Image.open(f"{rand_im}-vid_tmp_proc.png")
 
 
 
188
 
189
+ #image.save(f"{rand_im}-vid_tmp_proc.png")
190
+ #out = os.path.abspath(f"{rand_im}-vid_tmp_proc.png")
191
+ #out_url = f'https://omnibus_AI_or_Not_dev.hf.space/file={out}'
192
+ #out_url = f"{rand_im}-vid_tmp_proc.png"
193
+ return out
194
 
195
+
196
  with gr.Blocks() as app:
197
+ gr.Markdown("""<center><h1>AI Image Detector<br><h4>(Test Demo - accuracy varies by model)""")
198
  with gr.Column():
199
  inp = gr.Image(type='pil')
200
+ in_url=gr.Textbox(label="Image URL")
201
  with gr.Row():
202
+ load_btn=gr.Button("Load URL")
203
  btn = gr.Button("Detect AI")
204
+ mes = gr.HTML("""""")
205
+ with gr.Group():
206
+ with gr.Row():
207
+ fin=gr.Label(label="Final Probability")
208
+ with gr.Row():
209
+ with gr.Box():
210
+ lab0 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{models[0]}'>{models[0]}</a></b>""")
211
+ nun0 = gr.HTML("""""")
212
+ with gr.Box():
213
+ lab1 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{models[1]}'>{models[1]}</a></b>""")
214
+ nun1 = gr.HTML("""""")
215
+ with gr.Box():
216
+ lab2 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{models[2]}'>{models[2]}</a></b>""")
217
+ nun2 = gr.HTML("""""")
218
+
219
  with gr.Row():
220
+ with gr.Box():
221
+ n_out0=gr.Label(label="Output")
222
+ outp0 = gr.HTML("""""")
223
+ with gr.Box():
224
+ n_out1=gr.Label(label="Output")
225
+ outp1 = gr.HTML("""""")
226
+ with gr.Box():
227
+ n_out2=gr.Label(label="Output")
228
+ outp2 = gr.HTML("""""")
229
  with gr.Row():
230
+ with gr.Box():
231
+ n_out3=gr.Label(label="Output")
232
+ outp3 = gr.HTML("""""")
233
+ with gr.Box():
234
+ n_out4=gr.Label(label="Output")
235
+ outp4 = gr.HTML("""""")
236
+ with gr.Box():
237
+ n_out5=gr.Label(label="Output")
238
+ outp5 = gr.HTML("""""")
239
+ hid_box=gr.Textbox(visible=False)
240
+ hid_im = gr.Image(type="pil",visible=False)
241
+ def echo(inp):
242
+ return inp
243
+
244
+ #inp.change(echo,inp,hid_im).then(upd,hid_im,inp)
245
+
246
+ btn.click(fin_clear,None,fin,show_progress=False)
247
+ load_btn.click(load_url,in_url,[inp,mes])
248
+
249
+ btn.click(aiornot0,[inp],[outp0,n_out0]).then(tot_prob,None,fin,show_progress=False)
250
+ btn.click(aiornot1,[inp],[outp1,n_out1]).then(tot_prob,None,fin,show_progress=False)
251
+ btn.click(aiornot2,[inp],[outp2,n_out2]).then(tot_prob,None,fin,show_progress=False)
252
 
253
+ btn.click(image_classifier0,[inp],[n_out3]).then(tot_prob,None,fin,show_progress=False)
254
+ btn.click(image_classifier1,[inp],[n_out4]).then(tot_prob,None,fin,show_progress=False)
255
+ btn.click(image_classifier2,[inp],[n_out5]).then(tot_prob,None,fin,show_progress=False)
256
 
257
+ app.launch(show_api=False,max_threads=24)