File size: 8,519 Bytes
6364b8e
 
050a6c5
 
 
436d80d
050a6c5
06b2f35
 
 
050a6c5
06b2f35
050a6c5
977f529
d19e84e
75a5505
050a6c5
d19e84e
050a6c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2346d7
436d80d
050a6c5
 
5ca31bc
050a6c5
 
 
 
 
 
 
 
5ca31bc
050a6c5
5ca31bc
 
 
050a6c5
 
5ca31bc
 
050a6c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06b2f35
 
 
050a6c5
 
 
06b2f35
 
 
050a6c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ca31bc
050a6c5
 
 
 
 
5ca31bc
050a6c5
 
 
 
 
46a0a15
050a6c5
5ca31bc
050a6c5
5ca31bc
 
050a6c5
5ca31bc
050a6c5
5ca31bc
050a6c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ca31bc
050a6c5
 
 
 
 
 
 
 
 
5ca31bc
050a6c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46a0a15
050a6c5
 
 
d19e84e
050a6c5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import gradio as gr
import torch
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
#from transformers import pipeline
import os 
from numpy import exp
import pandas as  pd
from PIL import Image
import urllib.request 
import uuid
uid=uuid.uuid4()

models=[
    "cmckinle/sdxl-flux-detector",
    "umm-maybe/AI-image-detector",
    "Organika/sdxl-detector",
    #"arnolfokam/ai-generated-image-detector",
]

pipe0 = pipeline("image-classification", f"{models[0]}")
pipe1 = pipeline("image-classification", f"{models[1]}")
pipe2 = pipeline("image-classification", f"{models[2]}")
 

fin_sum=[] 
def image_classifier0(image):
    labels = ["AI","Real"]
    outputs = pipe0(image)
    results = {}
    result_test={}
    for idx,result in enumerate(outputs):
        results[labels[idx]] = outputs[idx]['score']
    #print (result_test)
    #for result in outputs:
    #    results[result['label']] = result['score']    
    #print (results) 
    fin_sum.append(results)
    return results
def image_classifier1(image):
    labels = ["AI","Real"]
    outputs = pipe1(image)
    results = {}
    result_test={}
    for idx,result in enumerate(outputs):
        results[labels[idx]] = outputs[idx]['score']
    #print (result_test)    
    #for result in outputs:
    #    results[result['label']] = result['score']
    #print (results)
    fin_sum.append(results)
    return results
def image_classifier2(image):
    labels = ["AI","Real"]
    outputs = pipe2(image)
    results = {}
    result_test={}
    for idx,result in enumerate(outputs):
        results[labels[idx]] = outputs[idx]['score']
    #print (result_test)    
    #for result in outputs:
    #    results[result['label']] = result['score']
    #print (results) 
    fin_sum.append(results)
    return results

def softmax(vector):
 e = exp(vector)
 return e / e.sum()

     

def aiornot0(image):    
    labels = ["AI", "Real"]
    mod=models[0]
    feature_extractor0 = AutoFeatureExtractor.from_pretrained(mod)
    model0 = AutoModelForImageClassification.from_pretrained(mod)
    input = feature_extractor0(image, return_tensors="pt")
    with torch.no_grad():
        outputs = model0(**input)
        logits = outputs.logits
        probability = softmax(logits)
        px = pd.DataFrame(probability.numpy())
    prediction = logits.argmax(-1).item()
    label = labels[prediction]
    html_out = f"""
    <h1>This image is likely: {label}</h1><br><h3>
 
    Probabilites:<br>
    Real: {px[1][0]}<br>
    AI: {px[0][0]}"""
    results = {}
    for idx,result in enumerate(px):
        results[labels[idx]] = px[idx][0]
    #results[labels['label']] = result['score']
    fin_sum.append(results)
    return gr.HTML.update(html_out),results
def aiornot1(image):    
    labels = ["AI", "Real"]
    mod=models[1]
    feature_extractor1 = AutoFeatureExtractor.from_pretrained(mod)
    model1 = AutoModelForImageClassification.from_pretrained(mod)
    input = feature_extractor1(image, return_tensors="pt")
    with torch.no_grad():
        outputs = model1(**input)
        logits = outputs.logits
        probability = softmax(logits)
        px = pd.DataFrame(probability.numpy())
    prediction = logits.argmax(-1).item()
    label = labels[prediction]
    html_out = f"""
    <h1>This image is likely: {label}</h1><br><h3>
  
    Probabilites:<br>
    Real: {px[1][0]}<br>
    AI: {px[0][0]}"""
    results = {}
    for idx,result in enumerate(px):
        results[labels[idx]] = px[idx][0]
    #results[labels['label']] = result['score']
    fin_sum.append(results)
    return gr.HTML.update(html_out),results    
def aiornot2(image):    
    labels = ["Real", "AI"]
    mod=models[2]
    feature_extractor2 = AutoFeatureExtractor.from_pretrained(mod)
    #feature_extractor2 = AutoFeatureExtractor.from_pretrained("microsoft/resnet-50")
    model2 = AutoModelForImageClassification.from_pretrained(mod)
    input = feature_extractor2(image, return_tensors="pt")
    with torch.no_grad():
        outputs = model2(**input)
        logits = outputs.logits
        probability = softmax(logits)
        px = pd.DataFrame(probability.numpy())
    prediction = logits.argmax(-1).item()
    label = labels[prediction]
    html_out = f"""
    <h1>This image is likely: {label}</h1><br><h3>
  
    Probabilites:<br>
    Real: {px[0][0]}<br>
    AI: {px[1][0]}"""

    results = {}
    for idx,result in enumerate(px):
        results[labels[idx]] = px[idx][0]
    #results[labels['label']] = result['score']
    fin_sum.append(results)
        
    return gr.HTML.update(html_out),results

def load_url(url):
    try:
        urllib.request.urlretrieve( 
            f'{url}', 
            f"{uid}tmp_im.png")         
        image = Image.open(f"{uid}tmp_im.png")
        mes = "Image Loaded"
    except Exception as e:
        image=None
        mes=f"Image not Found<br>Error: {e}"
    return image,mes

def tot_prob():
    try:
        fin_out = fin_sum[0]["Real"]+fin_sum[1]["Real"]+fin_sum[2]["Real"]+fin_sum[3]["Real"]+fin_sum[4]["Real"]+fin_sum[5]["Real"]
        fin_out = fin_out/6
        fin_sub = 1-fin_out
        out={
            "Real":f"{fin_out}",
            "AI":f"{fin_sub}"
        }
        #fin_sum.clear()
        #print (fin_out)
        return out
    except Exception as e:
        pass
        print (e)
        return None
def fin_clear():
    fin_sum.clear()
    return None

def upd(image):
    print (image)
    rand_im = uuid.uuid4()
    image.save(f"{rand_im}-vid_tmp_proc.png")
    out = Image.open(f"{rand_im}-vid_tmp_proc.png")

    #image.save(f"{rand_im}-vid_tmp_proc.png")
    #out = os.path.abspath(f"{rand_im}-vid_tmp_proc.png")
    #out_url = f'https://omnibus_AI_or_Not_dev.hf.space/file={out}'
    #out_url = f"{rand_im}-vid_tmp_proc.png"
    return out 

    
with gr.Blocks() as app:
    gr.Markdown("""<center><h1>AI Image Detector<br><h4>(Test Demo - accuracy varies by model)""")
    with gr.Column():
        inp = gr.Image(type='pil')
        in_url=gr.Textbox(label="Image URL")
        with gr.Row():
            load_btn=gr.Button("Load URL")
            btn = gr.Button("Detect AI")
        mes = gr.HTML("""""")
    with gr.Group():    
        with gr.Row():
            fin=gr.Label(label="Final Probability")       
        with gr.Row():
            with gr.Box():
                lab0 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co./{models[0]}'>{models[0]}</a></b>""")
                nun0 = gr.HTML("""""")
            with gr.Box():
                lab1 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co./{models[1]}'>{models[1]}</a></b>""")
                nun1 = gr.HTML("""""")
            with gr.Box():
                lab2 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co./{models[2]}'>{models[2]}</a></b>""")
                nun2 = gr.HTML("""""")
                
        with gr.Row():
            with gr.Box():
                n_out0=gr.Label(label="Output")
                outp0 = gr.HTML("""""")
            with gr.Box():
                n_out1=gr.Label(label="Output")
                outp1 = gr.HTML("""""")
            with gr.Box():
                n_out2=gr.Label(label="Output")
                outp2 = gr.HTML("""""")    
        with gr.Row():
            with gr.Box():
                n_out3=gr.Label(label="Output")
                outp3 = gr.HTML("""""")
            with gr.Box():
                n_out4=gr.Label(label="Output")
                outp4 = gr.HTML("""""")
            with gr.Box():
                n_out5=gr.Label(label="Output")
                outp5 = gr.HTML("""""")    
    hid_box=gr.Textbox(visible=False)  
    hid_im = gr.Image(type="pil",visible=False)
    def echo(inp):
        return inp

    #inp.change(echo,inp,hid_im).then(upd,hid_im,inp)
    
    btn.click(fin_clear,None,fin,show_progress=False)
    load_btn.click(load_url,in_url,[inp,mes])
    
    btn.click(aiornot0,[inp],[outp0,n_out0]).then(tot_prob,None,fin,show_progress=False)
    btn.click(aiornot1,[inp],[outp1,n_out1]).then(tot_prob,None,fin,show_progress=False)
    btn.click(aiornot2,[inp],[outp2,n_out2]).then(tot_prob,None,fin,show_progress=False)
    
    btn.click(image_classifier0,[inp],[n_out3]).then(tot_prob,None,fin,show_progress=False)
    btn.click(image_classifier1,[inp],[n_out4]).then(tot_prob,None,fin,show_progress=False)
    btn.click(image_classifier2,[inp],[n_out5]).then(tot_prob,None,fin,show_progress=False)

app.launch(show_api=False,max_threads=24)