Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,8 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
|
4 |
from numpy import exp
|
5 |
-
|
|
|
6 |
def softmax(vector):
|
7 |
e = exp(vector)
|
8 |
return e / e.sum()
|
@@ -10,68 +11,107 @@ def softmax(vector):
|
|
10 |
|
11 |
models=[
|
12 |
"Nahrawy/AIorNot",
|
13 |
-
"arnolfokam/ai-generated-image-detector",
|
14 |
"umm-maybe/AI-image-detector",
|
15 |
-
|
16 |
|
|
|
|
|
17 |
def aiornot0(image):
|
18 |
labels = ["Real", "AI"]
|
19 |
mod=models[0]
|
20 |
-
|
21 |
-
|
22 |
-
input =
|
23 |
with torch.no_grad():
|
24 |
-
outputs =
|
25 |
-
print (outputs)
|
26 |
logits = outputs.logits
|
27 |
-
print (logits)
|
28 |
probability = softmax(logits)
|
29 |
-
|
30 |
-
|
31 |
prediction = logits.argmax(-1).item()
|
32 |
-
label = labels[prediction]
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
def aiornot1(image):
|
35 |
labels = ["Real", "AI"]
|
36 |
mod=models[1]
|
37 |
-
|
38 |
-
|
39 |
-
input =
|
40 |
with torch.no_grad():
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
prediction = logits.argmax(-1).item()
|
46 |
-
label = labels[prediction]
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
def aiornot2(image):
|
49 |
-
labels = ["
|
50 |
mod=models[2]
|
51 |
-
|
52 |
-
|
53 |
-
input =
|
54 |
with torch.no_grad():
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
prediction = logits.argmax(-1).item()
|
60 |
-
label = labels[prediction]
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
btn.click(aiornot1,[inp],outp1)
|
75 |
-
btn.click(aiornot2,[inp],outp2)
|
76 |
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
|
4 |
from numpy import exp
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
def softmax(vector):
|
8 |
e = exp(vector)
|
9 |
return e / e.sum()
|
|
|
11 |
|
12 |
models=[
|
13 |
"Nahrawy/AIorNot",
|
|
|
14 |
"umm-maybe/AI-image-detector",
|
15 |
+
"arnolfokam/ai-generated-image-detector",
|
16 |
|
17 |
+
]
|
18 |
+
|
19 |
def aiornot0(image):
|
20 |
labels = ["Real", "AI"]
|
21 |
mod=models[0]
|
22 |
+
feature_extractor0 = AutoFeatureExtractor.from_pretrained(mod)
|
23 |
+
model0 = AutoModelForImageClassification.from_pretrained(mod)
|
24 |
+
input = feature_extractor0(image, return_tensors="pt")
|
25 |
with torch.no_grad():
|
26 |
+
outputs = model0(**input)
|
|
|
27 |
logits = outputs.logits
|
|
|
28 |
probability = softmax(logits)
|
29 |
+
px = pd.DataFrame(probability.numpy())
|
|
|
30 |
prediction = logits.argmax(-1).item()
|
31 |
+
label = labels[prediction]
|
32 |
+
html_out = f"""
|
33 |
+
<h1>This image is likely: {label}</h1><br><h3>
|
34 |
+
Model used: <a href='https://huggingface.co/{mod}'>{mod}</a><br>
|
35 |
+
<br>
|
36 |
+
Probabilites:<br>
|
37 |
+
Real: {px[0][0]}<br>
|
38 |
+
AI: {px[1][0]}"""
|
39 |
+
results = {}
|
40 |
+
for idx,result in enumerate(px):
|
41 |
+
results[labels[idx]] = px[idx][0]
|
42 |
+
#results[labels['label']] = result['score']
|
43 |
+
return gr.HTML.update(html_out),results
|
44 |
def aiornot1(image):
|
45 |
labels = ["Real", "AI"]
|
46 |
mod=models[1]
|
47 |
+
feature_extractor1 = AutoFeatureExtractor.from_pretrained(mod)
|
48 |
+
model1 = AutoModelForImageClassification.from_pretrained(mod)
|
49 |
+
input = feature_extractor1(image, return_tensors="pt")
|
50 |
with torch.no_grad():
|
51 |
+
outputs = model1(**input)
|
52 |
+
logits = outputs.logits
|
53 |
+
probability = softmax(logits)
|
54 |
+
px = pd.DataFrame(probability.numpy())
|
55 |
prediction = logits.argmax(-1).item()
|
56 |
+
label = labels[prediction]
|
57 |
+
html_out = f"""
|
58 |
+
<h1>This image is likely: {label}</h1><br><h3>
|
59 |
+
Model used: <a href='https://huggingface.co/{mod}'>{mod}</a><br>
|
60 |
+
<br>
|
61 |
+
Probabilites:<br>
|
62 |
+
Real: {px[0][0]}<br>
|
63 |
+
AI: {px[1][0]}"""
|
64 |
+
results = {}
|
65 |
+
for idx,result in enumerate(px):
|
66 |
+
results[labels[idx]] = px[idx][0]
|
67 |
+
#results[labels['label']] = result['score']
|
68 |
+
return gr.HTML.update(html_out),results
|
69 |
def aiornot2(image):
|
70 |
+
labels = ["AI", "Real"]
|
71 |
mod=models[2]
|
72 |
+
feature_extractor2 = AutoFeatureExtractor.from_pretrained(mod)
|
73 |
+
model2 = AutoModelForImageClassification.from_pretrained(mod)
|
74 |
+
input = feature_extractor2(image, return_tensors="pt")
|
75 |
with torch.no_grad():
|
76 |
+
outputs = model2(**input)
|
77 |
+
logits = outputs.logits
|
78 |
+
probability = softmax(logits)
|
79 |
+
px = pd.DataFrame(probability.numpy())
|
80 |
prediction = logits.argmax(-1).item()
|
81 |
+
label = labels[prediction]
|
82 |
+
html_out = f"""
|
83 |
+
<h1>This image is likely: {label}</h1><br><h3>
|
84 |
+
Model used: <a href='https://huggingface.co/{mod}'>{mod}</a><br>
|
85 |
+
<br>
|
86 |
+
Probabilites:<br>
|
87 |
+
Real: {px[1][0]}<br>
|
88 |
+
AI: {px[0][0]}"""
|
89 |
+
|
90 |
+
results = {}
|
91 |
+
for idx,result in enumerate(px):
|
92 |
+
results[labels[idx]] = px[idx][0]
|
93 |
+
#results[labels['label']] = result['score']
|
94 |
+
return gr.HTML.update(html_out),results
|
|
|
|
|
95 |
|
96 |
+
with gr.Blocks() as app:
|
97 |
+
with gr.Column():
|
98 |
+
inp = gr.Pil()
|
99 |
+
btn = gr.Button()
|
100 |
+
with gr.Group():
|
101 |
+
with gr.Row():
|
102 |
+
with gr.Box():
|
103 |
+
lab0 = gr.HTML(f"""<b>Testing on Model: {models[0]}</b>""")
|
104 |
+
outp0 = gr.HTML("""""")
|
105 |
+
n_out0=gr.Label(label="Output")
|
106 |
+
with gr.Box():
|
107 |
+
lab1 = gr.HTML(f"""<b>Testing on Model: {models[1]}</b>""")
|
108 |
+
outp1 = gr.HTML("""""")
|
109 |
+
n_out1=gr.Label(label="Output")
|
110 |
+
with gr.Box():
|
111 |
+
lab2 = gr.HTML(f"""<b>Testing on Model: {models[2]}</b>""")
|
112 |
+
outp2 = gr.HTML("""""")
|
113 |
+
n_out2=gr.Label(label="Output")
|
114 |
+
btn.click(aiornot0,[inp],[outp0,n_out0])
|
115 |
+
btn.click(aiornot1,[inp],[outp1,n_out1])
|
116 |
+
btn.click(aiornot2,[inp],[outp2,n_out2])
|
117 |
+
app.launch(enable_queue=False)
|