Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,935 Bytes
ded79ae 596d336 ded79ae 59812f5 596d336 ded79ae 596d336 c86c2f3 d2d3f64 c86c2f3 596d336 ded79ae 596d336 ded79ae 596d336 d38ce92 4522cd0 59812f5 4522cd0 141ba59 3992910 4522cd0 3992910 4522cd0 3992910 4522cd0 e6dd388 3992910 e6dd388 596d336 ded79ae 596d336 ded79ae 9ecc669 ded79ae 0c5ff1b ded79ae c86c2f3 09b3f75 c86c2f3 1827259 141ba59 ded79ae c86c2f3 d2d3f64 4522cd0 c86c2f3 6a15314 9b30274 141ba59 ded79ae c86c2f3 141ba59 b4ca5ac 141ba59 09b3f75 c86c2f3 141ba59 09b3f75 c86c2f3 4522cd0 c86c2f3 141ba59 09b3f75 c86c2f3 141ba59 09b3f75 c86c2f3 4522cd0 c86c2f3 141ba59 596d336 141ba59 1657fc1 6a15314 141ba59 1827259 e18ba1b 141ba59 596d336 141ba59 e6dd388 89f9579 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
import base64
import hashlib
import io
import os
from pathlib import Path
from threading import Thread
from typing import Iterator, Optional, List, Union
import gradio as gr
import spaces
import torch
from PIL import Image
from pydantic import BaseModel
from qwen_vl_utils import process_vision_info
from swift.llm import (
ModelType,
get_model_tokenizer,
get_default_template_type,
get_template,
inference,
inference_stream,
)
from transformers import (
Qwen2VLForConditionalGeneration,
PreTrainedTokenizer,
Qwen2VLProcessor,
TextIteratorStreamer,
AutoTokenizer,
)
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DESCRIPTION = """\
# Reasoning Paths Optimization: Learning to Reason and Explore From Diverse Paths
This Space demonstrates the reasoning paths optimization (RPO) framework with a Llama 3 model with 8B parameters fine-tuned for math reasoning. Feel free to play with it, or duplicate to run generations without a queue!
🔎 For more details about the RPO training framework, check out the [paper](https://arxiv.org/abs/2410.10858) or [code](https://github.com/DAMO-NLP-SG/reasoning-paths-optimization).
"""
LICENSE = """
<p/>
---
As a derivate work of [Llama-3-8b-chat](https://huggingface.co./meta-llama/Meta-Llama-3-8B) by Meta,
this demo is governed by the original [license](https://huggingface.co./meta-llama/Meta-Llama-3-8B/blob/main/LICENSE) and [acceptable use policy](https://huggingface.co./meta-llama/Meta-Llama-3-8B/blob/main/USE_POLICY.md).
"""
def convert_image_to_text(image: Image) -> str:
# This is also how OpenAI encodes images: https://platform.openai.com/docs/guides/vision
with io.BytesIO() as output:
image.save(output, format="PNG")
data = output.getvalue()
return base64.b64encode(data).decode("utf-8")
def convert_text_to_image(text: str) -> Image:
data = base64.b64decode(text.encode("utf-8"))
return Image.open(io.BytesIO(data))
def save_image(image: Image.Image, folder: str) -> str:
image_hash = hashlib.md5(image.tobytes()).hexdigest()
path = Path(folder, f"{image_hash}.png")
path.parent.mkdir(exist_ok=True, parents=True)
if not path.exists():
image.save(path)
return str(path)
def resize_image(image: Image.Image, max_size: int) -> Image.Image:
# Same as modeling.py resize_image
width, height = image.size
if width <= max_size and height <= max_size:
return image
if width > height:
new_width = max_size
new_height = round(height * max_size / width)
else:
new_height = max_size
new_width = round(width * max_size / height)
return image.resize((new_width, new_height), Image.LANCZOS)
class EvalModel(BaseModel, arbitrary_types_allowed=True):
engine: str
timeout: int = 60
temperature: float = 0.0
max_output_tokens: int = 512
def run(self, inputs: List[Union[str, Image.Image]]) -> str:
raise NotImplementedError
def run_many(self, inputs: List[Union[str, Image.Image]], num: int) -> List[str]:
raise NotImplementedError
class SwiftQwenModel(EvalModel):
# https://github.com/modelscope/ms-swift/blob/main/docs/source_en/Multi-Modal/qwen2-vl-best-practice.md
path: str = ""
model: Optional[Qwen2VLForConditionalGeneration] = None
tokenizer: Optional[PreTrainedTokenizer] = None
engine: str = ModelType.qwen2_vl_7b_instruct
image_size: int = 768
image_dir: str = "data/qwen_images"
def load(self):
if self.model is None or self.tokenizer is None:
self.model, self.tokenizer = get_model_tokenizer(
self.engine,
torch.bfloat16,
model_kwargs={"device_map": "auto"},
model_id_or_path=self.path or None,
)
def run(self, inputs: List[Union[str, Image.Image]]) -> str:
self.load()
template_type = get_default_template_type(self.engine)
self.model.generation_config.max_new_tokens = self.max_output_tokens
template = get_template(template_type, self.tokenizer)
text = "\n\n".join([x for x in inputs if isinstance(x, str)])
content = []
for x in inputs:
if isinstance(x, Image.Image):
path = save_image(resize_image(x, self.image_size), self.image_dir)
content.append(f"<img>{path}</img>")
content.append(text)
query = "".join(content)
response, history = inference(self.model, template, query)
return response
def run_stream(self, inputs: List[Union[str, Image.Image]]) -> Iterator[str]:
self.load()
template_type = get_default_template_type(self.engine)
self.model.generation_config.max_new_tokens = self.max_output_tokens
template = get_template(template_type, self.tokenizer)
text = "\n\n".join([x for x in inputs if isinstance(x, str)])
content = []
for x in inputs:
if isinstance(x, Image.Image):
path = save_image(resize_image(x, self.image_size), self.image_dir)
content.append(f"<img>{path}</img>")
content.append(text)
query = "".join(content)
generator = inference_stream(self.model, template, query)
print_idx = 0
print(f"query: {query}\nresponse: ", end="")
for response, history in generator:
delta = response[print_idx:]
print(delta, end="", flush=True)
print_idx = len(response)
yield delta
class QwenModel(EvalModel):
path: str = "models/qwen"
engine: str = "Qwen/Qwen2-VL-7B-Instruct"
model: Optional[Qwen2VLForConditionalGeneration] = None
processor: Optional[Qwen2VLProcessor] = None
tokenizer: Optional[AutoTokenizer] = None
device: str = "cuda"
image_size: int = 768
lora_path: str = ""
def load(self):
if self.model is None:
path = self.path if os.path.exists(self.path) else self.engine
print(dict(load_path=path))
# noinspection PyTypeChecker
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
path, torch_dtype="auto", device_map="auto"
)
self.tokenizer = AutoTokenizer.from_pretrained(self.engine)
if self.lora_path:
print("Loading LORA from", self.lora_path)
self.model.load_adapter(self.lora_path)
self.model = self.model.to(self.device).eval()
self.processor = Qwen2VLProcessor.from_pretrained(self.engine)
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)
def make_messages(self, inputs: List[Union[str, Image.Image]]) -> List[dict]:
text = "\n\n".join([x for x in inputs if isinstance(x, str)])
content = [
dict(
type="image",
image=f"data:image;base64,{convert_image_to_text(resize_image(x, self.image_size))}",
)
for x in inputs
if isinstance(x, Image.Image)
]
content.append(dict(type="text", text=text))
return [dict(role="user", content=content)]
def run(self, inputs: List[Union[str, Image.Image]]) -> str:
self.load()
messages = self.make_messages(inputs)
text = self.processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
# noinspection PyTypeChecker
model_inputs = self.processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to(self.device)
with torch.inference_mode():
generated_ids = self.model.generate(
**model_inputs, max_new_tokens=self.max_output_tokens
)
generated_ids_trimmed = [
out_ids[len(in_ids) :]
for in_ids, out_ids in zip(model_inputs.input_ids, generated_ids)
]
output_text = self.processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)
return output_text[0]
def run_stream(self, inputs: List[Union[str, Image.Image]]) -> Iterator[str]:
self.load()
messages = self.make_messages(inputs)
text = self.processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
# noinspection PyTypeChecker
model_inputs = self.processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to(self.device)
streamer = TextIteratorStreamer(
self.tokenizer,
timeout=10.0,
skip_prompt=True,
skip_special_tokens=True,
)
generate_kwargs = dict(
**model_inputs,
streamer=streamer,
max_new_tokens=self.max_output_tokens,
)
t = Thread(target=self.model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
if torch.cuda.is_available():
model = QwenModel()
model.load()
@spaces.GPU
def generate(
message: str,
chat_history: list[dict],
system_prompt: str = "",
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
for text in model.run_stream([message]):
yield text
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Textbox(label="System prompt", lines=6),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
[
"Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?"
],
[
"Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and May?"
],
[
"Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How much did she earn?"
],
],
cache_examples=False,
type="messages",
)
with gr.Blocks(css_paths="style.css", fill_height=True) as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use", elem_id="duplicate-button"
)
chat_interface.render()
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|