Spaces:
Running
on
Zero
Running
on
Zero
chiayewken
commited on
Commit
·
d38ce92
1
Parent(s):
9b30274
Update model in app.py
Browse files- .gitignore +1 -0
- app.py +6 -7
- run_demo.py +97 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.idea/
|
app.py
CHANGED
@@ -7,6 +7,8 @@ import spaces
|
|
7 |
import torch
|
8 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
9 |
|
|
|
|
|
10 |
MAX_MAX_NEW_TOKENS = 2048
|
11 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
12 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
@@ -34,7 +36,7 @@ if not torch.cuda.is_available():
|
|
34 |
|
35 |
|
36 |
if torch.cuda.is_available():
|
37 |
-
model_id = "
|
38 |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
|
39 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
40 |
tokenizer.use_default_system_prompt = False
|
@@ -51,13 +53,10 @@ def generate(
|
|
51 |
top_k: int = 50,
|
52 |
repetition_penalty: float = 1.2,
|
53 |
) -> Iterator[str]:
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
conversation += chat_history
|
58 |
-
conversation.append({"role": "user", "content": message})
|
59 |
|
60 |
-
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
|
61 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
62 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
63 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
|
|
7 |
import torch
|
8 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
9 |
|
10 |
+
from run_demo import ZeroShotChatTemplate
|
11 |
+
|
12 |
MAX_MAX_NEW_TOKENS = 2048
|
13 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
14 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
|
36 |
|
37 |
|
38 |
if torch.cuda.is_available():
|
39 |
+
model_id = "chiayewken/llama3-8b-gsm8k-rpo"
|
40 |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
|
41 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
42 |
tokenizer.use_default_system_prompt = False
|
|
|
53 |
top_k: int = 50,
|
54 |
repetition_penalty: float = 1.2,
|
55 |
) -> Iterator[str]:
|
56 |
+
demo = ZeroShotChatTemplate()
|
57 |
+
prompt = demo.make_prompt(message)
|
58 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
|
|
|
|
59 |
|
|
|
60 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
61 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
62 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
run_demo.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from typing import Optional, List
|
3 |
+
|
4 |
+
import vllm
|
5 |
+
from fire import Fire
|
6 |
+
from pydantic import BaseModel
|
7 |
+
from transformers import PreTrainedTokenizer, AutoTokenizer, AutoModelForCausalLM
|
8 |
+
|
9 |
+
|
10 |
+
class ZeroShotChatTemplate:
|
11 |
+
# This is the default template used in llama-factory for training
|
12 |
+
texts: List[str] = []
|
13 |
+
|
14 |
+
@staticmethod
|
15 |
+
def make_prompt(prompt: str) -> str:
|
16 |
+
return f"Human: {prompt}\nAssistant: "
|
17 |
+
|
18 |
+
@staticmethod
|
19 |
+
def get_stopping_words() -> List[str]:
|
20 |
+
return ["Human:"]
|
21 |
+
|
22 |
+
@staticmethod
|
23 |
+
def extract_answer(text: str) -> str:
|
24 |
+
filtered = "".join([char for char in text if char.isdigit() or char == " "])
|
25 |
+
if not filtered.strip():
|
26 |
+
return text
|
27 |
+
return re.findall(pattern=r"\d+", string=filtered)[-1]
|
28 |
+
|
29 |
+
|
30 |
+
class VLLMModel(BaseModel, arbitrary_types_allowed=True):
|
31 |
+
path_model: str
|
32 |
+
model: vllm.LLM = None
|
33 |
+
tokenizer: Optional[PreTrainedTokenizer] = None
|
34 |
+
max_input_length: int = 512
|
35 |
+
max_output_length: int = 512
|
36 |
+
stopping_words: Optional[List[str]] = None
|
37 |
+
|
38 |
+
def load(self):
|
39 |
+
if self.model is None:
|
40 |
+
self.model = vllm.LLM(model=self.path_model, trust_remote_code=True)
|
41 |
+
if self.tokenizer is None:
|
42 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.path_model)
|
43 |
+
|
44 |
+
def format_prompt(self, prompt: str) -> str:
|
45 |
+
self.load()
|
46 |
+
prompt = prompt.rstrip(" ") # Llama is sensitive (eg "Answer:" vs "Answer: ")
|
47 |
+
return prompt
|
48 |
+
|
49 |
+
def make_kwargs(self, do_sample: bool, **kwargs) -> dict:
|
50 |
+
if self.stopping_words:
|
51 |
+
kwargs.update(stop=self.stopping_words)
|
52 |
+
params = vllm.SamplingParams(
|
53 |
+
temperature=0.5 if do_sample else 0.0,
|
54 |
+
max_tokens=self.max_output_length,
|
55 |
+
**kwargs,
|
56 |
+
)
|
57 |
+
|
58 |
+
outputs = dict(sampling_params=params, use_tqdm=False)
|
59 |
+
return outputs
|
60 |
+
|
61 |
+
def run(self, prompt: str) -> str:
|
62 |
+
prompt = self.format_prompt(prompt)
|
63 |
+
outputs = self.model.generate([prompt], **self.make_kwargs(do_sample=False))
|
64 |
+
pred = outputs[0].outputs[0].text
|
65 |
+
pred = pred.split("<|endoftext|>")[0]
|
66 |
+
return pred
|
67 |
+
|
68 |
+
|
69 |
+
def upload_to_hub(path: str, repo_id: str):
|
70 |
+
tokenizer = AutoTokenizer.from_pretrained(path)
|
71 |
+
model = AutoModelForCausalLM.from_pretrained(path)
|
72 |
+
model.push_to_hub(repo_id)
|
73 |
+
tokenizer.push_to_hub(repo_id)
|
74 |
+
|
75 |
+
|
76 |
+
def main(
|
77 |
+
question: str = "Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?",
|
78 |
+
**kwargs,
|
79 |
+
):
|
80 |
+
model = VLLMModel(**kwargs)
|
81 |
+
demo = ZeroShotChatTemplate()
|
82 |
+
model.stopping_words = demo.get_stopping_words()
|
83 |
+
|
84 |
+
prompt = demo.make_prompt(question)
|
85 |
+
raw_outputs = model.run(prompt)
|
86 |
+
pred = demo.extract_answer(raw_outputs)
|
87 |
+
print(dict(question=question, prompt=prompt, raw_outputs=raw_outputs, pred=pred))
|
88 |
+
|
89 |
+
|
90 |
+
"""
|
91 |
+
p run_demo.py upload_to_hub outputs_paths/gsm8k_paths_llama3_8b_beta_03_rank_128/final chiayewken/llama3-8b-gsm8k-rpo
|
92 |
+
p run_demo.py main --path_model chiayewken/llama3-8b-gsm8k-rpo
|
93 |
+
"""
|
94 |
+
|
95 |
+
|
96 |
+
if __name__ == "__main__":
|
97 |
+
Fire()
|