File size: 5,612 Bytes
8f28ceb
299fbac
8f28ceb
 
 
 
 
 
473e3b4
 
 
8f28ceb
c9dfe43
bb99597
 
 
 
473e3b4
 
16bbc5d
473e3b4
 
8f28ceb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffb2c37
8f28ceb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9dfe43
 
 
8f28ceb
 
440bb16
 
 
ea219e7
8f28ceb
 
 
 
 
d346fac
 
 
8f28ceb
 
 
 
 
 
 
eef9fc0
 
 
 
 
d346fac
8f28ceb
d346fac
eef9fc0
 
 
 
 
8f28ceb
 
 
 
 
 
6f2ae3a
8f28ceb
 
 
 
 
 
 
eef9fc0
8f28ceb
 
 
 
 
 
 
 
 
 
 
 
 
 
aeafe2c
8f28ceb
 
 
 
 
aeafe2c
8f28ceb
 
d346fac
8f28ceb
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from sentence_transformers import SentenceTransformer
from PyPDF2 import PdfReader
import numpy as np
import torch

class RAGChatbot:
    def __init__(self, 
                 model_name="facebook/opt-350m", 
                 embedding_model="all-MiniLM-L6-v2"):
        # Initialize tokenizer and model
        self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
        # self.bnb_config = BitsAndBytesConfig(
        #                 load_in_8bit=True,   # Enable 8-bit loading
        #                 llm_int8_threshold=6.0,  # Threshold for mixed-precision computation
        #             )
        self.model = AutoModelForCausalLM.from_pretrained(
            model_name, 
            torch_dtype=torch.bfloat16,  
            device_map="auto"
        )
        
        # Initialize embedding model
        self.embedding_model = SentenceTransformer(embedding_model)
        
        # Initialize document storage
        self.documents = []
        self.embeddings = []

    def extract_text_from_pdf(self, pdf_path):
        reader = PdfReader(pdf_path)
        text = ""
        for page in reader.pages:
            text += page.extract_text() + "\n"
        return text

    def load_documents(self, file_paths):
        self.documents = []
        self.embeddings = []
        
        for file_path in file_paths:
            if file_path.endswith('.pdf'):
                text = self.extract_text_from_pdf(file_path)
            else:
                with open(file_path, 'r', encoding='utf-8') as f:
                    text = f.read()
            
            # Split text into chunks
            chunks = [text[i:i+500] for i in range(0, len(text), 500)]
            self.documents.extend(chunks)
        
        # Generate embeddings
        self.embeddings = self.embedding_model.encode(self.documents)
        return f"Loaded {len(self.documents)} text chunks from {len(file_paths)} files"

    def retrieve_relevant_context(self, query, top_k=3):
        if not self.documents:
            return "No documents loaded"
        
        # Generate query embedding
        query_embedding = self.embedding_model.encode([query])[0]
        
        # Calculate cosine similarities
        similarities = np.dot(self.embeddings, query_embedding) / (
            np.linalg.norm(self.embeddings, axis=1) * np.linalg.norm(query_embedding)
        )
        
        # Get top k most similar documents
        top_indices = similarities.argsort()[-top_k:][::-1]
        return " ".join([self.documents[i] for i in top_indices])

    def generate_response(self, query, context):
        # Construct prompt with 
        truncated_context = " ".join(context.split()[:100]) 
        full_prompt = f"Context: {truncated_context}\n\nQuestion: {query}\n\nAnswer:"
        
        # Generate response
        tokens = self.tokenizer(full_prompt, return_tensors="pt", padding=True, truncation=True).to(self.model.device)
        inputs = tokens.input_ids.to(self.model.device)
        attention_mask = tokens.attention_mask
        outputs = self.model.generate(inputs, max_new_tokens=128,attention_mask=attention_mask,pad_token_id=self.tokenizer.eos_token_id,repetition_penalty=1.0)
        response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
        
        return response.split("Answer:")[-1].strip()

    def chat(self, query, history):
        if not query:
            return history, ""
        
        try:
            # Retrieve relevant context
            context = self.retrieve_relevant_context(query)
            
            # Generate response
            response = self.generate_response(query, context)
            
            # Append to history using messages format
            updated_history = history + [
                {"role": "user", "content": query},
                {"role": "assistant", "content": response}
            ]
            return updated_history, ""
        except Exception as e:
            error_response = f"An error occurred: {str(e)}"
            updated_history = history + [
                {"role": "user", "content": query},
                {"role": "assistant", "content": error_response}
            ]
            return updated_history, ""

# Create Gradio interface
def create_interface():
    rag_chatbot = RAGChatbot()

    with gr.Blocks() as demo:
        gr.Markdown("# Ask your PDf!")
        
        with gr.Row():
            file_input = gr.File(label="Upload Documents", file_count="multiple", type="filepath")
            load_btn = gr.Button("Load Documents")
        
        status_output = gr.Textbox(label="Load Status")
        
        chatbot = gr.Chatbot(type="messages")  # Specify message type
        msg = gr.Textbox(label="Enter your query")
        submit_btn = gr.Button("Send")
        clear_btn = gr.Button("Clear Chat")

        # Event handlers
        load_btn.click(
            rag_chatbot.load_documents, 
            inputs=[file_input], 
            outputs=[status_output]
        )
        
        submit_btn.click(
            rag_chatbot.chat, 
            inputs=[msg, chatbot], 
            outputs=[chatbot, msg]
        )
        
        msg.submit(
            rag_chatbot.chat, 
            inputs=[msg, chatbot], 
            outputs=[chatbot, msg]
        )
        
        clear_btn.click(lambda: (None, ""), None, [chatbot, msg])

    return demo

# Launch the app
if __name__ == "__main__":
    demo = create_interface()
    demo.launch()