Spaces:
Sleeping
Sleeping
chayanbhansali
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,7 @@ class RAGChatbot:
|
|
10 |
model_name="facebook/opt-350m",
|
11 |
embedding_model="all-MiniLM-L6-v2"):
|
12 |
# Initialize tokenizer and model
|
13 |
-
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
# self.bnb_config = BitsAndBytesConfig(
|
15 |
# load_in_8bit=True, # Enable 8-bit loading
|
16 |
# llm_int8_threshold=6.0, # Threshold for mixed-precision computation
|
@@ -51,7 +51,7 @@ class RAGChatbot:
|
|
51 |
self.documents.extend(chunks)
|
52 |
|
53 |
# Generate embeddings
|
54 |
-
self.embeddings = self.embedding_model.encode(self.documents)
|
55 |
return f"Loaded {len(self.documents)} text chunks from {len(file_paths)} files"
|
56 |
|
57 |
def retrieve_relevant_context(self, query, top_k=3):
|
@@ -71,11 +71,12 @@ class RAGChatbot:
|
|
71 |
return " ".join([self.documents[i] for i in top_indices])
|
72 |
|
73 |
def generate_response(self, query, context):
|
74 |
-
# Construct prompt with
|
75 |
-
|
|
|
76 |
|
77 |
# Generate response
|
78 |
-
inputs = self.tokenizer(full_prompt, return_tensors="pt").to(self.model.device)
|
79 |
outputs = self.model.generate(**inputs, max_new_tokens=150)
|
80 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
81 |
|
|
|
10 |
model_name="facebook/opt-350m",
|
11 |
embedding_model="all-MiniLM-L6-v2"):
|
12 |
# Initialize tokenizer and model
|
13 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
14 |
# self.bnb_config = BitsAndBytesConfig(
|
15 |
# load_in_8bit=True, # Enable 8-bit loading
|
16 |
# llm_int8_threshold=6.0, # Threshold for mixed-precision computation
|
|
|
51 |
self.documents.extend(chunks)
|
52 |
|
53 |
# Generate embeddings
|
54 |
+
self.embeddings = self.embedding_model.encode(self.documents, batch_size=32, show_progress_bar=True)
|
55 |
return f"Loaded {len(self.documents)} text chunks from {len(file_paths)} files"
|
56 |
|
57 |
def retrieve_relevant_context(self, query, top_k=3):
|
|
|
71 |
return " ".join([self.documents[i] for i in top_indices])
|
72 |
|
73 |
def generate_response(self, query, context):
|
74 |
+
# Construct prompt with
|
75 |
+
truncated_context = " ".join(context.split()[:100])
|
76 |
+
full_prompt = f"Context: {truncated_context}\n\nQuestion: {query}\n\nAnswer:"
|
77 |
|
78 |
# Generate response
|
79 |
+
inputs = self.tokenizer(full_prompt, return_tensors="pt", padding=True, truncation=True).to(self.model.device)
|
80 |
outputs = self.model.generate(**inputs, max_new_tokens=150)
|
81 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
82 |
|