File size: 8,240 Bytes
55f0564
 
 
 
 
 
 
 
 
 
 
 
 
 
1787e27
55f0564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import os
import glob
import uuid

import gradio as gr
from PIL import Image
import cv2
import numpy as np
import supervision as sv
from ultralyticsplus import YOLO, download_from_hub

hf_model_ids = ["chanelcolgate/rods-count-v1", "chanelcolgate/cab-v1"]

image_paths = [
    [image_path, "chanelcolgate/rods-count-v1", 640, 0.6, 0.45]
    for image_path in glob.glob("./images/*.jpg")
]

video_paths = [
    [video_path, "chanelcolgate/cab-v1"]
    for video_path in glob.glob("./videos/*.mp4")
]


def get_center_of_bbox(bbox):
    x1, y1, x2, y2 = bbox
    return int((x1 + x2) / 2), int((y1 + y2) / 2)


def get_bbox_width(bbox):
    return int(bbox[2] - bbox[0])


def draw_circle(pil_image, bbox, color, id):
    # Convert PIL image to a numpy array (OpenCV format)
    cv_image = np.array(pil_image)

    # Convert RGB to BGR (OpenCV format)
    cv_image = cv2.cvtColor(cv_image, cv2.COLOR_RGB2BGR)

    x_center, y_center = get_center_of_bbox(bbox)
    width = get_bbox_width(bbox)

    # Draw the circle on the image
    cv2.circle(
        cv_image,
        center=(x_center, y_center),
        radius=int(width * 0.5 * 0.6),
        color=color,
        thickness=1,
    )

    cv2.putText(
        cv_image,
        f"{id}",
        (x_center - 6, y_center + 6),
        cv2.FONT_HERSHEY_SIMPLEX,
        0.5,
        (255, 249, 208),
        2,
    )

    # Convert BGR back to RGB (PIL format)
    cv_image = cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB)

    # Convert the numpy array back to a PIL Image
    pil_image = Image.fromarray(cv_image)
    return pil_image


def count_predictions(
    image=None,
    hf_model_id="chanelcolgate/rods-count-v1",
    image_size=640,
    conf_threshold=0.25,
    iou_threshold=0.45,
):
    model_path = download_from_hub(hf_model_id)
    model = YOLO(model_path)
    results = model(
        image, imgsz=image_size, conf=conf_threshold, iou=iou_threshold
    )
    detections = sv.Detections.from_ultralytics(results[0])

    for id, detection in enumerate(detections):
        image = image.copy()
        bbox = detection[0].tolist()
        image = draw_circle(image, bbox, (90, 178, 255), id + 1)
    return image, len(detections)


def count_across_line(
    source_video_path=None,
    hf_model_id="chanelcolgate/cab-v1",
):
    TARGET_VIDEO_PATH = os.path.join("./", f"{uuid.uuid4()}.mp4")

    LINE_START = sv.Point(976, 212)
    LINE_END = sv.Point(976, 1276)

    model_path = download_from_hub(hf_model_id)
    model = YOLO(model_path)

    byte_tracker = sv.ByteTrack(
        track_thresh=0.25, track_buffer=30, match_thresh=0.8, frame_rate=30
    )

    video_info = sv.VideoInfo.from_video_path(source_video_path)

    generator = sv.get_video_frames_generator(source_video_path)

    line_zone = sv.LineZone(start=LINE_START, end=LINE_END)

    box_annotator = sv.BoxAnnotator(thickness=4, text_thickness=4, text_scale=2)

    trace_annotator = sv.TraceAnnotator(thickness=4, trace_length=50)
    line_zone_annotator = sv.LineZoneAnnotator(
        thickness=4, text_thickness=4, text_scale=2
    )

    def callback(frame: np.ndarray, index: int) -> np.ndarray:
        results = model.predict(frame)

        cls_names = results[0].names
        detection = sv.Detections.from_ultralytics(results[0])
        detection_supervision = byte_tracker.update_with_detections(detection)
        labels_convert = [
            f"#{tracker_id} {cls_names[class_id]} {confidence:0.2f}"
            for _, _, confidence, class_id, tracker_id, _ in detection_supervision
        ]

        annotated_frame = trace_annotator.annotate(
            scene=frame.copy(), detections=detection_supervision
        )
        annotated_frame = box_annotator.annotate(
            scene=annotated_frame,
            detections=detection_supervision,
            skip_label=True,
            # labels=labels_convert,
        )

        # update line counter
        line_zone.trigger(detection_supervision)

        # return frame with box and line annotated result
        return line_zone_annotator.annotate(
            annotated_frame, line_counter=line_zone
        )

    # process the whole video
    sv.process_video(
        source_path=source_video_path,
        target_path=TARGET_VIDEO_PATH,
        callback=callback,
    )

    return TARGET_VIDEO_PATH, line_zone.out_count


def count_in_zone(
    source_video_path=None,
    hf_model_id="chanelcolgate/cab-v1",
):
    TARGET_VIDEO_PATH = os.path.join("./", f"{uuid.uuid4()}.mp4")

    colors = sv.ColorPalette.default()
    polygons = [
        np.array([[88, 292], [748, 284], [736, 1160], [96, 1148]]),
        np.array([[844, 240], [844, 1132], [1580, 1124], [1584, 264]]),
    ]

    model_path = download_from_hub(hf_model_id)
    model = YOLO(model_path)

    byte_tracker = sv.ByteTrack(
        track_thresh=0.25, track_buffer=30, match_thresh=0.8, frame_rate=30
    )

    video_info = sv.VideoInfo.from_video_path(source_video_path)
    generator = sv.get_video_frames_generator(source_video_path)
    zones = [
        sv.PolygonZone(
            polygon=polygon, frame_resolution_wh=video_info.resolution_wh
        )
        for polygon in polygons
    ]
    zone_annotators = [
        sv.PolygonZoneAnnotator(
            zone=zone,
            color=colors.by_idx(index),
            thickness=4,
            text_thickness=4,
            text_scale=2,
        )
        for index, zone in enumerate(zones)
    ]
    box_annotators = [
        sv.BoxAnnotator(
            thickness=4,
            text_thickness=4,
            text_scale=2,
            color=colors.by_idx(index),
        )
        for index in range(len(polygons))
    ]

    def callback(frame: np.ndarray, index: int) -> np.ndarray:
        results = model.predict(frame)

        detection = sv.Detections.from_ultralytics(results[0])
        detection_supervision = byte_tracker.update_with_detections(detection)
        for zone, zone_annotator, box_annotator in zip(
            zones, zone_annotators, box_annotators
        ):
            zone.trigger(detections=detection_supervision)
            frame = box_annotator.annotate(
                scene=frame, detections=detection_supervision, skip_label=True
            )
            frame = zone_annotator.annotate(scene=frame)
        return frame

    sv.process_video(
        source_path=source_video_path,
        target_path=TARGET_VIDEO_PATH,
        callback=callback,
    )

    return TARGET_VIDEO_PATH, [zone.current_count for zone in zones]


title = "Demo Counting"

interface_count_predictions = gr.Interface(
    fn=count_predictions,
    inputs=[
        gr.Image(type="pil"),
        gr.Dropdown(hf_model_ids),
        gr.Slider(
            minimum=320, maximum=1280, value=640, step=32, label="Image Size"
        ),
        gr.Slider(
            minimum=0.0,
            maximum=1.0,
            value=0.25,
            step=0.05,
            label="Confidence Threshold",
        ),
        gr.Slider(
            minimum=0.0,
            maximum=1.0,
            value=0.45,
            step=0.05,
            label="IOU Threshold",
        ),
    ],
    outputs=[gr.Image(type="pil"), gr.Textbox(show_label=False)],
    title="Count Predictions",
    examples=image_paths,
    cache_examples=True if image_paths else False,
)

interface_count_across_line = gr.Interface(
    fn=count_across_line,
    inputs=[
        gr.Video(label="Input Video"),
        gr.Dropdown(hf_model_ids),
    ],
    outputs=[gr.Video(label="Output Video"), gr.Textbox(show_label=False)],
    title="Count Across Line",
    examples=video_paths,
    cache_examples=True if video_paths else False,
)

interface_count_in_zone = gr.Interface(
    fn=count_in_zone,
    inputs=[gr.Video(label="Input Video"), gr.Dropdown(hf_model_ids)],
    outputs=[gr.Video(label="Output Video"), gr.Textbox(show_label=False)],
    title="Count in Zone",
    examples=video_paths,
    cache_examples=True if video_paths else False,
)

gr.TabbedInterface(
    [
        interface_count_predictions,
        interface_count_across_line,
        interface_count_in_zone,
    ],
    tab_names=["Count Predictions", "Count Across Line", "Count in Zone"],
    title="Demo Counting",
).queue().launch()