Spaces:
Runtime error
Runtime error
chanelcolgate
commited on
Commit
•
55f0564
1
Parent(s):
a458541
init
Browse files- .gitignore +4 -0
- app.py +291 -0
- images/62167111_jpg.rf.a28be3ccf9faa13da52aa007a7f7ed7a.jpg +0 -0
- images/A1A37A49_jpg.rf.43566e5df62b02365ced4a5bd5e21f47.jpg +0 -0
- images/A2A2E11D_jpg.rf.b366674522f576b023f5fbe116993eb7.jpg +0 -0
- images/A3EEA8A1_jpg.rf.f66d063ebbf0fe0ccc969198c6eaab63.jpg +0 -0
- images/A48928D0_jpg.rf.7926dbc20dfd480327a6ff81cfc69961.jpg +0 -0
- images/A49FFA35_jpg.rf.44ef65e540674b2bfc40361ec77569ea.jpg +0 -0
- images/A6EE237B_jpg.rf.92877f1bc68547a947773e58d62dd59d.jpg +0 -0
- images/A6F01C78_jpg.rf.3f74c020ece68222d8221abcda7b6461.jpg +0 -0
- images/A8658634_jpg.rf.52fc338e7cb1c1ba92322299ae32ce2b.jpg +0 -0
- images/ABB2195A_jpg.rf.4f96f89ee3348fb7ee8cdf77e026998a.jpg +0 -0
- requirements.txt +6 -0
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.git/
|
2 |
+
flagged/
|
3 |
+
gradio_cached_examples/
|
4 |
+
yolov8n.pt
|
app.py
ADDED
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import uuid
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
from PIL import Image
|
7 |
+
import cv2
|
8 |
+
import numpy as np
|
9 |
+
import supervision as sv
|
10 |
+
from ultralyticsplus import YOLO, download_from_hub
|
11 |
+
|
12 |
+
hf_model_ids = ["chanelcolgate/rods-count-v1", "chanelcolgate/cab-v1"]
|
13 |
+
|
14 |
+
image_paths = [
|
15 |
+
[image_path, "chanelcolgate/rods-cout-v1", 640, 0.6, 0.45]
|
16 |
+
for image_path in glob.glob("./images/*.jpg")
|
17 |
+
]
|
18 |
+
|
19 |
+
video_paths = [
|
20 |
+
[video_path, "chanelcolgate/cab-v1"]
|
21 |
+
for video_path in glob.glob("./videos/*.mp4")
|
22 |
+
]
|
23 |
+
|
24 |
+
|
25 |
+
def get_center_of_bbox(bbox):
|
26 |
+
x1, y1, x2, y2 = bbox
|
27 |
+
return int((x1 + x2) / 2), int((y1 + y2) / 2)
|
28 |
+
|
29 |
+
|
30 |
+
def get_bbox_width(bbox):
|
31 |
+
return int(bbox[2] - bbox[0])
|
32 |
+
|
33 |
+
|
34 |
+
def draw_circle(pil_image, bbox, color, id):
|
35 |
+
# Convert PIL image to a numpy array (OpenCV format)
|
36 |
+
cv_image = np.array(pil_image)
|
37 |
+
|
38 |
+
# Convert RGB to BGR (OpenCV format)
|
39 |
+
cv_image = cv2.cvtColor(cv_image, cv2.COLOR_RGB2BGR)
|
40 |
+
|
41 |
+
x_center, y_center = get_center_of_bbox(bbox)
|
42 |
+
width = get_bbox_width(bbox)
|
43 |
+
|
44 |
+
# Draw the circle on the image
|
45 |
+
cv2.circle(
|
46 |
+
cv_image,
|
47 |
+
center=(x_center, y_center),
|
48 |
+
radius=int(width * 0.5 * 0.6),
|
49 |
+
color=color,
|
50 |
+
thickness=1,
|
51 |
+
)
|
52 |
+
|
53 |
+
cv2.putText(
|
54 |
+
cv_image,
|
55 |
+
f"{id}",
|
56 |
+
(x_center - 6, y_center + 6),
|
57 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
58 |
+
0.5,
|
59 |
+
(255, 249, 208),
|
60 |
+
2,
|
61 |
+
)
|
62 |
+
|
63 |
+
# Convert BGR back to RGB (PIL format)
|
64 |
+
cv_image = cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB)
|
65 |
+
|
66 |
+
# Convert the numpy array back to a PIL Image
|
67 |
+
pil_image = Image.fromarray(cv_image)
|
68 |
+
return pil_image
|
69 |
+
|
70 |
+
|
71 |
+
def count_predictions(
|
72 |
+
image=None,
|
73 |
+
hf_model_id="chanelcolgate/rods-count-v1",
|
74 |
+
image_size=640,
|
75 |
+
conf_threshold=0.25,
|
76 |
+
iou_threshold=0.45,
|
77 |
+
):
|
78 |
+
model_path = download_from_hub(hf_model_id)
|
79 |
+
model = YOLO(model_path)
|
80 |
+
results = model(
|
81 |
+
image, imgsz=image_size, conf=conf_threshold, iou=iou_threshold
|
82 |
+
)
|
83 |
+
detections = sv.Detections.from_ultralytics(results[0])
|
84 |
+
|
85 |
+
for id, detection in enumerate(detections):
|
86 |
+
image = image.copy()
|
87 |
+
bbox = detection[0].tolist()
|
88 |
+
image = draw_circle(image, bbox, (90, 178, 255), id + 1)
|
89 |
+
return image, len(detections)
|
90 |
+
|
91 |
+
|
92 |
+
def count_across_line(
|
93 |
+
source_video_path=None,
|
94 |
+
hf_model_id="chanelcolgate/cab-v1",
|
95 |
+
):
|
96 |
+
TARGET_VIDEO_PATH = os.path.join("./", f"{uuid.uuid4()}.mp4")
|
97 |
+
|
98 |
+
LINE_START = sv.Point(976, 212)
|
99 |
+
LINE_END = sv.Point(976, 1276)
|
100 |
+
|
101 |
+
model_path = download_from_hub(hf_model_id)
|
102 |
+
model = YOLO(model_path)
|
103 |
+
|
104 |
+
byte_tracker = sv.ByteTrack(
|
105 |
+
track_thresh=0.25, track_buffer=30, match_thresh=0.8, frame_rate=30
|
106 |
+
)
|
107 |
+
|
108 |
+
video_info = sv.VideoInfo.from_video_path(source_video_path)
|
109 |
+
|
110 |
+
generator = sv.get_video_frames_generator(source_video_path)
|
111 |
+
|
112 |
+
line_zone = sv.LineZone(start=LINE_START, end=LINE_END)
|
113 |
+
|
114 |
+
box_annotator = sv.BoxAnnotator(thickness=4, text_thickness=4, text_scale=2)
|
115 |
+
|
116 |
+
trace_annotator = sv.TraceAnnotator(thickness=4, trace_length=50)
|
117 |
+
line_zone_annotator = sv.LineZoneAnnotator(
|
118 |
+
thickness=4, text_thickness=4, text_scale=2
|
119 |
+
)
|
120 |
+
|
121 |
+
def callback(frame: np.ndarray, index: int) -> np.ndarray:
|
122 |
+
results = model.predict(frame)
|
123 |
+
|
124 |
+
cls_names = results[0].names
|
125 |
+
detection = sv.Detections.from_ultralytics(results[0])
|
126 |
+
detection_supervision = byte_tracker.update_with_detections(detection)
|
127 |
+
labels_convert = [
|
128 |
+
f"#{tracker_id} {cls_names[class_id]} {confidence:0.2f}"
|
129 |
+
for _, _, confidence, class_id, tracker_id, _ in detection_supervision
|
130 |
+
]
|
131 |
+
|
132 |
+
annotated_frame = trace_annotator.annotate(
|
133 |
+
scene=frame.copy(), detections=detection_supervision
|
134 |
+
)
|
135 |
+
annotated_frame = box_annotator.annotate(
|
136 |
+
scene=annotated_frame,
|
137 |
+
detections=detection_supervision,
|
138 |
+
skip_label=True,
|
139 |
+
# labels=labels_convert,
|
140 |
+
)
|
141 |
+
|
142 |
+
# update line counter
|
143 |
+
line_zone.trigger(detection_supervision)
|
144 |
+
|
145 |
+
# return frame with box and line annotated result
|
146 |
+
return line_zone_annotator.annotate(
|
147 |
+
annotated_frame, line_counter=line_zone
|
148 |
+
)
|
149 |
+
|
150 |
+
# process the whole video
|
151 |
+
sv.process_video(
|
152 |
+
source_path=source_video_path,
|
153 |
+
target_path=TARGET_VIDEO_PATH,
|
154 |
+
callback=callback,
|
155 |
+
)
|
156 |
+
|
157 |
+
return TARGET_VIDEO_PATH, line_zone.out_count
|
158 |
+
|
159 |
+
|
160 |
+
def count_in_zone(
|
161 |
+
source_video_path=None,
|
162 |
+
hf_model_id="chanelcolgate/cab-v1",
|
163 |
+
):
|
164 |
+
TARGET_VIDEO_PATH = os.path.join("./", f"{uuid.uuid4()}.mp4")
|
165 |
+
|
166 |
+
colors = sv.ColorPalette.default()
|
167 |
+
polygons = [
|
168 |
+
np.array([[88, 292], [748, 284], [736, 1160], [96, 1148]]),
|
169 |
+
np.array([[844, 240], [844, 1132], [1580, 1124], [1584, 264]]),
|
170 |
+
]
|
171 |
+
|
172 |
+
model_path = download_from_hub(hf_model_id)
|
173 |
+
model = YOLO(model_path)
|
174 |
+
|
175 |
+
byte_tracker = sv.ByteTrack(
|
176 |
+
track_thresh=0.25, track_buffer=30, match_thresh=0.8, frame_rate=30
|
177 |
+
)
|
178 |
+
|
179 |
+
video_info = sv.VideoInfo.from_video_path(source_video_path)
|
180 |
+
generator = sv.get_video_frames_generator(source_video_path)
|
181 |
+
zones = [
|
182 |
+
sv.PolygonZone(
|
183 |
+
polygon=polygon, frame_resolution_wh=video_info.resolution_wh
|
184 |
+
)
|
185 |
+
for polygon in polygons
|
186 |
+
]
|
187 |
+
zone_annotators = [
|
188 |
+
sv.PolygonZoneAnnotator(
|
189 |
+
zone=zone,
|
190 |
+
color=colors.by_idx(index),
|
191 |
+
thickness=4,
|
192 |
+
text_thickness=4,
|
193 |
+
text_scale=2,
|
194 |
+
)
|
195 |
+
for index, zone in enumerate(zones)
|
196 |
+
]
|
197 |
+
box_annotators = [
|
198 |
+
sv.BoxAnnotator(
|
199 |
+
thickness=4,
|
200 |
+
text_thickness=4,
|
201 |
+
text_scale=2,
|
202 |
+
color=colors.by_idx(index),
|
203 |
+
)
|
204 |
+
for index in range(len(polygons))
|
205 |
+
]
|
206 |
+
|
207 |
+
def callback(frame: np.ndarray, index: int) -> np.ndarray:
|
208 |
+
results = model.predict(frame)
|
209 |
+
|
210 |
+
detection = sv.Detections.from_ultralytics(results[0])
|
211 |
+
detection_supervision = byte_tracker.update_with_detections(detection)
|
212 |
+
for zone, zone_annotator, box_annotator in zip(
|
213 |
+
zones, zone_annotators, box_annotators
|
214 |
+
):
|
215 |
+
zone.trigger(detections=detection_supervision)
|
216 |
+
frame = box_annotator.annotate(
|
217 |
+
scene=frame, detections=detection_supervision, skip_label=True
|
218 |
+
)
|
219 |
+
frame = zone_annotator.annotate(scene=frame)
|
220 |
+
return frame
|
221 |
+
|
222 |
+
sv.process_video(
|
223 |
+
source_path=source_video_path,
|
224 |
+
target_path=TARGET_VIDEO_PATH,
|
225 |
+
callback=callback,
|
226 |
+
)
|
227 |
+
|
228 |
+
return TARGET_VIDEO_PATH, [zone.current_count for zone in zones]
|
229 |
+
|
230 |
+
|
231 |
+
title = "Demo Counting"
|
232 |
+
|
233 |
+
interface_count_predictions = gr.Interface(
|
234 |
+
fn=count_predictions,
|
235 |
+
inputs=[
|
236 |
+
gr.Image(type="pil"),
|
237 |
+
gr.Dropdown(hf_model_ids),
|
238 |
+
gr.Slider(
|
239 |
+
minimum=320, maximum=1280, value=640, step=32, label="Image Size"
|
240 |
+
),
|
241 |
+
gr.Slider(
|
242 |
+
minimum=0.0,
|
243 |
+
maximum=1.0,
|
244 |
+
value=0.25,
|
245 |
+
step=0.05,
|
246 |
+
label="Confidence Threshold",
|
247 |
+
),
|
248 |
+
gr.Slider(
|
249 |
+
minimum=0.0,
|
250 |
+
maximum=1.0,
|
251 |
+
value=0.45,
|
252 |
+
step=0.05,
|
253 |
+
label="IOU Threshold",
|
254 |
+
),
|
255 |
+
],
|
256 |
+
outputs=[gr.Image(type="pil"), gr.Textbox(show_label=False)],
|
257 |
+
title="Count Predictions",
|
258 |
+
examples=image_paths,
|
259 |
+
cache_examples=True if image_paths else False,
|
260 |
+
)
|
261 |
+
|
262 |
+
interface_count_across_line = gr.Interface(
|
263 |
+
fn=count_across_line,
|
264 |
+
inputs=[
|
265 |
+
gr.Video(label="Input Video"),
|
266 |
+
gr.Dropdown(hf_model_ids),
|
267 |
+
],
|
268 |
+
outputs=[gr.Video(label="Output Video"), gr.Textbox(show_label=False)],
|
269 |
+
title="Count Across Line",
|
270 |
+
examples=video_paths,
|
271 |
+
cache_examples=True if video_paths else False,
|
272 |
+
)
|
273 |
+
|
274 |
+
interface_count_in_zone = gr.Interface(
|
275 |
+
fn=count_in_zone,
|
276 |
+
inputs=[gr.Video(label="Input Video"), gr.Dropdown(hf_model_ids)],
|
277 |
+
outputs=[gr.Video(label="Output Video"), gr.Textbox(show_label=False)],
|
278 |
+
title="Count in Zone",
|
279 |
+
examples=video_paths,
|
280 |
+
cache_examples=True if video_paths else False,
|
281 |
+
)
|
282 |
+
|
283 |
+
gr.TabbedInterface(
|
284 |
+
[
|
285 |
+
interface_count_predictions,
|
286 |
+
interface_count_across_line,
|
287 |
+
interface_count_in_zone,
|
288 |
+
],
|
289 |
+
tab_names=["Count Predictions", "Count Across Line", "Count in Zone"],
|
290 |
+
title="Demo Counting",
|
291 |
+
).queue().launch()
|
images/62167111_jpg.rf.a28be3ccf9faa13da52aa007a7f7ed7a.jpg
ADDED
images/A1A37A49_jpg.rf.43566e5df62b02365ced4a5bd5e21f47.jpg
ADDED
images/A2A2E11D_jpg.rf.b366674522f576b023f5fbe116993eb7.jpg
ADDED
images/A3EEA8A1_jpg.rf.f66d063ebbf0fe0ccc969198c6eaab63.jpg
ADDED
images/A48928D0_jpg.rf.7926dbc20dfd480327a6ff81cfc69961.jpg
ADDED
images/A49FFA35_jpg.rf.44ef65e540674b2bfc40361ec77569ea.jpg
ADDED
images/A6EE237B_jpg.rf.92877f1bc68547a947773e58d62dd59d.jpg
ADDED
images/A6F01C78_jpg.rf.3f74c020ece68222d8221abcda7b6461.jpg
ADDED
images/A8658634_jpg.rf.52fc338e7cb1c1ba92322299ae32ce2b.jpg
ADDED
images/ABB2195A_jpg.rf.4f96f89ee3348fb7ee8cdf77e026998a.jpg
ADDED
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.26.0
|
2 |
+
ultralyticsplus==0.0.29
|
3 |
+
pillow==10.2.0
|
4 |
+
opencv-python==4.7.0.72
|
5 |
+
numpy==1.24.4
|
6 |
+
supervision==0.18.0
|