File size: 7,247 Bytes
176abf3
 
 
d912153
176abf3
 
 
afa3a48
 
 
d912153
 
 
 
 
176abf3
afa3a48
e05b08a
afa3a48
 
 
 
 
 
 
 
 
 
d912153
 
176abf3
 
 
 
 
 
 
 
74cc02c
 
 
afa3a48
 
 
 
 
 
d912153
8a01ec0
176abf3
c89663f
d912153
8a01ec0
c89663f
 
 
d912153
 
c89663f
 
 
d912153
8a01ec0
 
 
d912153
 
 
8a01ec0
176abf3
 
afa3a48
176abf3
 
8a01ec0
 
afa3a48
176abf3
8a01ec0
afa3a48
176abf3
8f74b38
afa3a48
176abf3
d912153
176abf3
 
afa3a48
 
 
 
 
d912153
afa3a48
 
 
 
 
 
 
 
 
 
d912153
 
afa3a48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d912153
afa3a48
 
 
d912153
afa3a48
 
 
 
 
 
 
 
d912153
 
 
afa3a48
 
d912153
afa3a48
 
 
d912153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afa3a48
 
 
 
 
d912153
 
afa3a48
d912153
afa3a48
 
176abf3
1915a9e
afa3a48
 
d912153
 
1915a9e
176abf3
 
 
8a01ec0
afa3a48
65ee7c3
176abf3
 
 
d912153
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
import io
import fitz  # PyMuPDF
from PIL import Image, ImageOps, ImageChops
from docx import Document
from rembg import remove
import gradio as gr
from hezar.models import Model
from ultralytics import YOLO
import json
import logging
import shutil

# تنظیمات لاگ
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# ایجاد دایرکتوری‌های لازم
os.makedirs("static", exist_ok=True)
os.makedirs("output_images", exist_ok=True)

def remove_readonly(func, path, excinfo):
    os.chmod(path, stat.S_IWRITE)
    func(path)

current_dir = os.path.dirname(os.path.abspath(__file__))
ultralytics_path = os.path.join(current_dir, 'runs')

if os.path.exists(ultralytics_path):
    shutil.rmtree(ultralytics_path, onerror=remove_readonly)

def trim_whitespace(image):
    gray_image = ImageOps.grayscale(image)
    inverted_image = ImageChops.invert(gray_image)
    bbox = inverted_image.getbbox()
    trimmed_image = image.crop(bbox)
    return trimmed_image

def convert_pdf_to_images(pdf_path, zoom=2):
    pdf_document = fitz.open(pdf_path)
    images = []
    for page_num in range(len(pdf_document)):
        page = pdf_document.load_page(page_num)
        matrix = fitz.Matrix(zoom, zoom)
        pix = page.get_pixmap(matrix=matrix)
        image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
        trimmed_image = trim_whitespace(image)
        images.append(trimmed_image)
    logging.info(f"Converted PDF {pdf_path} to images.")
    return images

def convert_docx_to_jpeg(docx_bytes):
    document = Document(io.BytesIO(docx_bytes))
    images = []
    for rel in document.part.rels.values():
        if "image" in rel.target_ref:
            image_stream = rel.target_part.blob
            image = Image.open(io.BytesIO(image_stream))
            jpeg_image = io.BytesIO()
            image.convert('RGB').save(jpeg_image, format="JPEG")
            jpeg_image.seek(0)
            images.append(Image.open(jpeg_image))
    logging.info("Converted DOCX to images.")
    return images

def remove_background_from_image(image):
    result = remove(image)
    logging.info("Removed background from image.")
    return result

def process_file(input_file):
    file_extension = os.path.splitext(input_file.name)[1].lower()
    images = []

    if file_extension in ['.png', '.jpeg', '.jpg', '.bmp', '.gif']:
        image = Image.open(input_file)
        output_image = remove_background_from_image(image)
        images.append(output_image)
    elif file_extension == '.pdf':
        images = convert_pdf_to_images(input_file.name)
        images = [remove_background_from_image(image) for image in images]
    elif file_extension in ['.docx', '.doc']:
        images = convert_docx_to_jpeg(input_file.name)
        images = [remove_background_from_image(image) for image in images]
    else:
        logging.error("File format not supported.")
        return "File format not supported."

    input_folder = 'output_images'
    for i, img in enumerate(images):
        if img.mode == 'RGBA':
            img = img.convert('RGB')
        img.save(os.path.join(input_folder, f'image_{i}.jpg'))
    logging.info("Processed file and saved images.")
    return images

def run_detection_and_ocr():
    # Load models
    ocr_model = Model.load('hezarai/crnn-fa-printed-96-long')
    yolo_model_check = YOLO("best_300_D_check.pt")
    yolo_model_numbers = YOLO("P_D_T.pt")
    
    input_folder = 'output_images'
    yolo_model_check.predict(input_folder, save=True, conf=0.5, save_crop=True)
    logging.info("Ran YOLO detection for check model.")

    output_folder = 'runs/detect/predict'
    crop_folder = os.path.join(output_folder, 'crops')
    
    results = []
    
    for filename in os.listdir(input_folder):
        if filename.endswith('.JPEG') or filename.endswith('.jpg'):
            image_path = os.path.join(input_folder, filename)
            if os.path.exists(crop_folder):
                crops = []
                for crop_label in os.listdir(crop_folder):
                    crop_label_folder = os.path.join(crop_folder, crop_label)
                    if os.path.isdir(crop_label_folder):
                        for crop_filename in os.listdir(crop_label_folder):
                            crop_image_path = os.path.join(crop_label_folder, crop_filename)
                            if crop_label in ['mablagh_H', 'owner', 'vajh']:
                                text_prediction = predict_text(ocr_model, crop_image_path)
                            else:
                                text_prediction = process_numbers(yolo_model_numbers, crop_image_path)
                            crops.append({
                                'crop_image_path': crop_image_path,
                                'text_prediction': text_prediction,
                                'class_label': crop_label
                            })
                results.append({
                    'image': filename,
                    'crops': crops
                })
    logging.info("Processed detection and OCR.")
    output_json_path = 'output.json'
    with open(output_json_path, 'w', encoding='utf-8') as f:
        json.dump(results, f, ensure_ascii=False, indent=4)
    logging.info("Saved results to JSON.")
    return output_json_path

def predict_text(model, image_path):
    try:
        image = Image.open(image_path)
        image = image.resize((320, 320))
        output = model.predict(image)
        if isinstance(output, list):
            result = ' '.join([item['text'] for item in output])
            logging.info(f"Predicted text for {image_path}.")
            return result
        return str(output)
    except FileNotFoundError:
        logging.error(f"File not found: {image_path}.")
        return "N/A"

def process_numbers(model, image_path):
    label_map = {
        '-': '/',
        '0': '0',
        '1': '1',
        '2': '2',
        '3': '3',
        '4': '4',
        '4q': '4',
        '5': '5',
        '6': '6',
        '6q': '6',
        '7': '7',
        '8': '8',
        '9': '9'
    }
    results = model(image_path, conf=0.5, save_crop=False)
    detected_objects = []
    for result in results[0].boxes:
        class_id = int(result.cls[0].cpu().numpy())
        label = model.names[class_id]
        mapped_label = label_map.get(label, '')
        detected_objects.append({'bbox': result.xyxy[0].cpu().numpy().tolist(), 'label': mapped_label})
    sorted_objects = sorted(detected_objects, key=lambda x: x['bbox'][0])
    logging.info(f"Processed numbers for {image_path}.")
    return ''.join([obj['label'] for obj in sorted_objects])

def gradio_interface(input_file):
    images = process_file(input_file)
    json_output = run_detection_and_ocr()
    with open(json_output, 'r', encoding='utf-8') as f:
        data = json.load(f)
    logging.info("Generated JSON output for Gradio interface.")
    return images,data

iface = gr.Interface(
    fn=gradio_interface,
    inputs=gr.File(label="Upload Word, PDF, or Image"),
    outputs=gr.JSON(label="JSON Output"),
    title="Ocr_check"
)

if __name__ == "__main__":
    logging.info("Starting Gradio interface.")
    iface.launch()