Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,32 @@
|
|
1 |
import os
|
|
|
2 |
from PIL import Image, ImageOps, ImageChops
|
3 |
import io
|
4 |
import fitz # PyMuPDF
|
5 |
from docx import Document
|
6 |
from rembg import remove
|
7 |
import gradio as gr
|
8 |
-
import
|
9 |
-
import
|
10 |
-
|
11 |
-
from docx import Document
|
12 |
-
from PIL import Image
|
13 |
|
14 |
-
# ایجاد
|
15 |
os.makedirs("static", exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def trim_whitespace(image):
|
17 |
gray_image = ImageOps.grayscale(image)
|
18 |
inverted_image = ImageChops.invert(gray_image)
|
@@ -21,34 +35,20 @@ def trim_whitespace(image):
|
|
21 |
return trimmed_image
|
22 |
|
23 |
def convert_pdf_to_images(pdf_path, zoom=2):
|
24 |
-
|
25 |
-
|
26 |
pdf_document = fitz.open(pdf_path)
|
27 |
-
|
28 |
images = []
|
29 |
for page_num in range(len(pdf_document)):
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
return images
|
37 |
|
38 |
-
|
39 |
def convert_docx_to_jpeg(docx_bytes):
|
40 |
-
"""
|
41 |
-
Convert each image in a DOCX file to a separate JPEG image and return them as a list.
|
42 |
-
|
43 |
-
Args:
|
44 |
-
- docx_bytes: The binary content of the DOCX file.
|
45 |
-
|
46 |
-
Returns:
|
47 |
-
- A list of PIL Image objects in JPEG format.
|
48 |
-
"""
|
49 |
document = Document(BytesIO(docx_bytes))
|
50 |
images = []
|
51 |
-
|
52 |
for rel in document.part.rels.values():
|
53 |
if "image" in rel.target_ref:
|
54 |
image_stream = rel.target_part.blob
|
@@ -57,49 +57,124 @@ def convert_docx_to_jpeg(docx_bytes):
|
|
57 |
image.convert('RGB').save(jpeg_image, format="JPEG")
|
58 |
jpeg_image.seek(0)
|
59 |
images.append(Image.open(jpeg_image))
|
60 |
-
|
61 |
return images
|
62 |
|
63 |
-
# Example usage:
|
64 |
-
# with open("example.docx", "rb") as f:
|
65 |
-
# docx_bytes = f.read()
|
66 |
-
# images = convert_docx_to_jpeg(docx_bytes)
|
67 |
-
# for img in images:
|
68 |
-
# img.show()
|
69 |
-
|
70 |
def remove_background_from_image(image):
|
71 |
return remove(image)
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
def process_file(input_file):
|
78 |
file_extension = os.path.splitext(input_file.name)[1].lower()
|
|
|
79 |
|
80 |
if file_extension in ['.png', '.jpeg', '.jpg', '.bmp', '.gif']:
|
81 |
image = Image.open(input_file)
|
82 |
-
image = image.convert('RGB')
|
83 |
output_image = remove_background_from_image(image)
|
84 |
-
|
85 |
elif file_extension == '.pdf':
|
86 |
images = convert_pdf_to_images(input_file.name)
|
87 |
-
|
88 |
elif file_extension in ['.docx', '.doc']:
|
89 |
images = convert_docx_to_jpeg(input_file.name)
|
90 |
-
|
91 |
else:
|
92 |
return "File format not supported."
|
93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
def gradio_interface(input_file):
|
95 |
-
|
|
|
|
|
|
|
96 |
|
97 |
iface = gr.Interface(
|
98 |
fn=gradio_interface,
|
99 |
inputs=gr.File(label="Upload Word, PDF, or Image"),
|
100 |
-
outputs=gr.
|
101 |
-
title="Document to
|
102 |
)
|
103 |
|
104 |
if __name__ == "__main__":
|
105 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
|
3 |
from PIL import Image, ImageOps, ImageChops
|
4 |
import io
|
5 |
import fitz # PyMuPDF
|
6 |
from docx import Document
|
7 |
from rembg import remove
|
8 |
import gradio as gr
|
9 |
+
from hezar.models import Model
|
10 |
+
from ultralytics import YOLO
|
11 |
+
import json
|
|
|
|
|
12 |
|
13 |
+
# ایجاد دایرکتوریهای لازم
|
14 |
os.makedirs("static", exist_ok=True)
|
15 |
+
os.makedirs("output_images", exist_ok=True)
|
16 |
+
|
17 |
+
|
18 |
+
def remove_readonly(func, path, excinfo):
|
19 |
+
os.chmod(path, stat.S_IWRITE)
|
20 |
+
func(path)
|
21 |
+
|
22 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
23 |
+
ultralytics_path = os.path.join(current_dir, 'runs')
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
if os.path.exists(ultralytics_path):
|
28 |
+
|
29 |
+
shutil.rmtree(ultralytics_path, onerror=remove_readonly)
|
30 |
def trim_whitespace(image):
|
31 |
gray_image = ImageOps.grayscale(image)
|
32 |
inverted_image = ImageChops.invert(gray_image)
|
|
|
35 |
return trimmed_image
|
36 |
|
37 |
def convert_pdf_to_images(pdf_path, zoom=2):
|
|
|
|
|
38 |
pdf_document = fitz.open(pdf_path)
|
|
|
39 |
images = []
|
40 |
for page_num in range(len(pdf_document)):
|
41 |
+
page = pdf_document.load_page(page_num)
|
42 |
+
matrix = fitz.Matrix(zoom, zoom)
|
43 |
+
pix = page.get_pixmap(matrix=matrix)
|
44 |
+
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
45 |
+
trimmed_image = trim_whitespace(image)
|
46 |
+
images.append(trimmed_image)
|
47 |
return images
|
48 |
|
|
|
49 |
def convert_docx_to_jpeg(docx_bytes):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
document = Document(BytesIO(docx_bytes))
|
51 |
images = []
|
|
|
52 |
for rel in document.part.rels.values():
|
53 |
if "image" in rel.target_ref:
|
54 |
image_stream = rel.target_part.blob
|
|
|
57 |
image.convert('RGB').save(jpeg_image, format="JPEG")
|
58 |
jpeg_image.seek(0)
|
59 |
images.append(Image.open(jpeg_image))
|
|
|
60 |
return images
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
def remove_background_from_image(image):
|
63 |
return remove(image)
|
64 |
|
|
|
|
|
|
|
|
|
65 |
def process_file(input_file):
|
66 |
file_extension = os.path.splitext(input_file.name)[1].lower()
|
67 |
+
images = []
|
68 |
|
69 |
if file_extension in ['.png', '.jpeg', '.jpg', '.bmp', '.gif']:
|
70 |
image = Image.open(input_file)
|
|
|
71 |
output_image = remove_background_from_image(image)
|
72 |
+
images.append(output_image)
|
73 |
elif file_extension == '.pdf':
|
74 |
images = convert_pdf_to_images(input_file.name)
|
75 |
+
images = [remove_background_from_image(image) for image in images]
|
76 |
elif file_extension in ['.docx', '.doc']:
|
77 |
images = convert_docx_to_jpeg(input_file.name)
|
78 |
+
images = [remove_background_from_image(image) for image in images]
|
79 |
else:
|
80 |
return "File format not supported."
|
81 |
|
82 |
+
input_folder = 'output_images'
|
83 |
+
for i, img in enumerate(images):
|
84 |
+
if img.mode == 'RGBA':
|
85 |
+
img = img.convert('RGB')
|
86 |
+
img.save(os.path.join(input_folder, f'image_{i}.jpg'))
|
87 |
+
|
88 |
+
return images
|
89 |
+
|
90 |
+
|
91 |
+
import shutil
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
def run_detection_and_ocr():
|
96 |
+
# Load models
|
97 |
+
ocr_model = Model.load('hezarai/crnn-fa-printed-96-long')
|
98 |
+
yolo_model_check = YOLO("best_300_D_check.pt")
|
99 |
+
yolo_model_numbers = YOLO("P_D_T.pt")
|
100 |
+
|
101 |
+
input_folder = 'output_images'
|
102 |
+
yolo_model_check.predict(input_folder, save=True, conf=0.5, save_crop=True)
|
103 |
+
|
104 |
+
output_folder = 'runs/detect/predict'
|
105 |
+
crop_folder = os.path.join(output_folder, 'crops')
|
106 |
+
|
107 |
+
results = []
|
108 |
+
|
109 |
+
for filename in os.listdir(input_folder):
|
110 |
+
if filename.endswith('.JPEG') or filename.endswith('.jpg'):
|
111 |
+
image_path = os.path.join(input_folder, filename)
|
112 |
+
|
113 |
+
if os.path.exists(crop_folder):
|
114 |
+
crops = []
|
115 |
+
for crop_label in os.listdir(crop_folder):
|
116 |
+
crop_label_folder = os.path.join(crop_folder, crop_label)
|
117 |
+
if os.path.isdir(crop_label_folder):
|
118 |
+
for crop_filename in os.listdir(crop_label_folder):
|
119 |
+
crop_image_path = os.path.join(crop_label_folder, crop_filename)
|
120 |
+
if crop_label in ['mablagh_H', 'owner', 'vajh']:
|
121 |
+
text_prediction = predict_text(ocr_model, crop_image_path)
|
122 |
+
else:
|
123 |
+
text_prediction = process_numbers(yolo_model_numbers, crop_image_path)
|
124 |
+
crops.append({
|
125 |
+
'crop_image_path': crop_image_path,
|
126 |
+
'text_prediction': text_prediction,
|
127 |
+
'class_label': crop_label
|
128 |
+
})
|
129 |
+
results.append({
|
130 |
+
'image': filename,
|
131 |
+
'crops': crops
|
132 |
+
})
|
133 |
+
|
134 |
+
output_json_path = 'output.json'
|
135 |
+
with open(output_json_path, 'w', encoding='utf-8') as f:
|
136 |
+
json.dump(results, f, ensure_ascii=False, indent=4)
|
137 |
+
|
138 |
+
return output_json_path
|
139 |
+
|
140 |
+
def predict_text(model, image_path):
|
141 |
+
try:
|
142 |
+
image = Image.open(image_path)
|
143 |
+
image = image.resize((320, 320))
|
144 |
+
output = model.predict(image)
|
145 |
+
if isinstance(output, list):
|
146 |
+
return ' '.join([item['text'] for item in output])
|
147 |
+
return str(output)
|
148 |
+
except FileNotFoundError:
|
149 |
+
return "N/A"
|
150 |
+
|
151 |
+
def process_numbers(model, image_path):
|
152 |
+
results = model(image_path, conf=0.5, save_crop=False)
|
153 |
+
detected_objects = []
|
154 |
+
for result in results[0].boxes:
|
155 |
+
class_id = int(result.cls[0].cpu().numpy())
|
156 |
+
label = model.names[class_id]
|
157 |
+
detected_objects.append({'bbox': result.xyxy[0].cpu().numpy().tolist(), 'label': label})
|
158 |
+
sorted_objects = sorted(detected_objects, key=lambda x: x['bbox'][0])
|
159 |
+
return ''.join([obj['label'] for obj in sorted_objects])
|
160 |
+
|
161 |
def gradio_interface(input_file):
|
162 |
+
process_file(input_file)
|
163 |
+
json_output = run_detection_and_ocr()
|
164 |
+
with open(json_output, 'r', encoding='utf-8') as f:
|
165 |
+
return json.load(f)
|
166 |
|
167 |
iface = gr.Interface(
|
168 |
fn=gradio_interface,
|
169 |
inputs=gr.File(label="Upload Word, PDF, or Image"),
|
170 |
+
outputs=gr.JSON(label="JSON Output"),
|
171 |
+
title="Document to JSON Converter with Background Removal"
|
172 |
)
|
173 |
|
174 |
if __name__ == "__main__":
|
175 |
+
iface.launch()
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
|