Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import shutil | |
import tempfile | |
import time | |
from os import path | |
import gradio as gr | |
import numpy as np | |
import rembg | |
import spaces | |
import torch | |
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler, StableDiffusionXLPipeline, LCMScheduler | |
from einops import rearrange | |
from huggingface_hub import hf_hub_download | |
from omegaconf import OmegaConf | |
from PIL import Image | |
from pytorch_lightning import seed_everything | |
from safetensors.torch import load_file | |
from torchvision.transforms import v2 | |
from tqdm import tqdm | |
from src.utils.camera_util import (FOV_to_intrinsics, get_circular_camera_poses, | |
get_zero123plus_input_cameras) | |
from src.utils.infer_util import (remove_background, resize_foreground) | |
from src.utils.mesh_util import save_glb, save_obj | |
from src.utils.train_util import instantiate_from_config | |
zero = torch.Tensor([0]).cuda() | |
print(zero.device) # <-- 'cpu' π€ | |
print(zero.device) # <-- 'cuda:0' π€ | |
def find_cuda(): | |
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH') | |
if cuda_home and os.path.exists(cuda_home): | |
return cuda_home | |
nvcc_path = shutil.which('nvcc') | |
if nvcc_path: | |
cuda_path = os.path.dirname(os.path.dirname(nvcc_path)) | |
return cuda_path | |
return None | |
def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False): | |
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation) | |
if is_flexicubes: | |
cameras = torch.linalg.inv(c2ws) | |
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1) | |
else: | |
extrinsics = c2ws.flatten(-2) | |
intrinsics = FOV_to_intrinsics(50.0).unsqueeze( | |
0).repeat(M, 1, 1).float().flatten(-2) | |
cameras = torch.cat([extrinsics, intrinsics], dim=-1) | |
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1) | |
return cameras | |
def check_input_image(input_image): | |
if input_image is None: | |
raise gr.Error("No image selected!") | |
def preprocess(input_image, do_remove_background): | |
rembg_session = rembg.new_session() if do_remove_background else None | |
if do_remove_background: | |
input_image = remove_background(input_image, rembg_session) | |
input_image = resize_foreground(input_image, 1) | |
return input_image | |
def generate_mvs(input_image, sample_steps, sample_seed): | |
seed_everything(sample_seed) | |
print(zero.device) # <-- 'cuda:0' π€ | |
z123_image = pipeline( | |
input_image, num_inference_steps=sample_steps).images[0] | |
show_image = np.asarray(z123_image, dtype=np.uint8) | |
show_image = torch.from_numpy(show_image) | |
show_image = rearrange( | |
show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2) | |
show_image = rearrange( | |
show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3) | |
show_image = Image.fromarray(show_image.numpy()) | |
return z123_image, show_image | |
def make3d(images): | |
print(zero.device) # <-- 'cuda:0' π€ | |
global model | |
if IS_FLEXICUBES: | |
model.init_flexicubes_geometry(device, use_renderer=False) | |
model = model.eval() | |
images = np.asarray(images, dtype=np.float32) / 255.0 | |
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() | |
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) | |
input_cameras = get_zero123plus_input_cameras( | |
batch_size=1, radius=4.0).to(device) | |
render_cameras = get_render_cameras( | |
batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device) | |
images = images.unsqueeze(0).to(device) | |
images = v2.functional.resize( | |
images, (320, 320), interpolation=3, antialias=True).clamp(0, 1) | |
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name | |
print(mesh_fpath) | |
mesh_basename = os.path.basename(mesh_fpath).split('.')[0] | |
mesh_dirname = os.path.dirname(mesh_fpath) | |
mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb") | |
with torch.no_grad(): | |
planes = model.forward_planes(images, input_cameras) | |
mesh_out = model.extract_mesh( | |
planes, use_texture_map=False, **infer_config) | |
vertices, faces, vertex_colors = mesh_out | |
vertices = vertices[:, [1, 2, 0]] | |
save_glb(vertices, faces, vertex_colors, mesh_glb_fpath) | |
save_obj(vertices, faces, vertex_colors, mesh_fpath) | |
print(f"Mesh saved to {mesh_fpath}") | |
return mesh_fpath, mesh_glb_fpath | |
def process_image(num_images, prompt): | |
print(zero.device) # <-- 'cuda:0' π€ | |
global pipe | |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16): | |
return pipe( | |
prompt=[prompt]*num_images, | |
generator=torch.Generator().manual_seed(123), | |
num_inference_steps=1, | |
guidance_scale=0., | |
height=int(512), | |
width=int(512), | |
timesteps=[800] | |
).images | |
# Configuration | |
cuda_path = find_cuda() | |
config_path = 'configs/instant-mesh-large.yaml' | |
config = OmegaConf.load(config_path) | |
config_name = os.path.basename(config_path).replace('.yaml', '') | |
model_config = config.model_config | |
infer_config = config.infer_config | |
IS_FLEXICUBES = config_name.startswith('instant-mesh') | |
device = torch.device('cuda') | |
# Load diffusion model | |
print('Loading diffusion model ...') | |
pipeline = DiffusionPipeline.from_pretrained( | |
"sudo-ai/zero123plus-v1.2", | |
custom_pipeline="zero123plus", | |
torch_dtype=torch.float16, | |
) | |
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config( | |
pipeline.scheduler.config, timestep_spacing='trailing' | |
) | |
unet_ckpt_path = hf_hub_download( | |
repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model") | |
state_dict = torch.load(unet_ckpt_path, map_location='cpu') | |
pipeline.unet.load_state_dict(state_dict, strict=True) | |
pipeline = pipeline.to(device) | |
# Load reconstruction model | |
print('Loading reconstruction model ...') | |
model_ckpt_path = hf_hub_download( | |
repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model") | |
model = instantiate_from_config(model_config) | |
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict'] | |
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith( | |
'lrm_generator.') and 'source_camera' not in k} | |
model.load_state_dict(state_dict, strict=True) | |
model = model.to(device) | |
print('Carga Completa!') | |
# Gradio UI | |
with gr.Blocks() as demo: | |
with gr.Row(variant="panel"): | |
with gr.Column(): | |
with gr.Row(): | |
input_image = gr.Image( | |
label="Imagen de Entrada", | |
image_mode="RGBA", | |
sources="upload", | |
type="pil", | |
elem_id="content_image", | |
) | |
processed_image = gr.Image( | |
label="Imagen sin Fondo", | |
image_mode="RGBA", | |
type="pil", | |
interactive=False | |
) | |
with gr.Row(): | |
with gr.Group(): | |
do_remove_background = gr.Checkbox( | |
label="Quitar Fondo", value=True) | |
sample_seed = gr.Number( | |
value=42, label="Valor de la semilla", precision=0) | |
sample_steps = gr.Slider( | |
label="Pasos de muestreo", minimum=30, maximum=75, value=75, step=5) | |
with gr.Row(): | |
submit = gr.Button( | |
"Generar", elem_id="generate", variant="primary") | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
mv_show_images = gr.Image( | |
label="Generar Multi-vistas", | |
type="pil", | |
width=379, | |
interactive=False | |
) | |
with gr.Row(): | |
with gr.Tab("OBJ"): | |
output_model_obj = gr.Model3D( | |
label="(Formato OBJ)", | |
interactive=False, | |
) | |
with gr.Tab("GLB"): | |
output_model_glb = gr.Model3D( | |
label="(Formato GLB)", | |
interactive=False, | |
) | |
mv_images = gr.State() | |
submit.click(fn=check_input_image, inputs=[input_image]).success( | |
fn=preprocess, | |
inputs=[input_image, do_remove_background], | |
outputs=[processed_image], | |
).success( | |
fn=generate_mvs, | |
inputs=[processed_image, sample_steps, sample_seed], | |
outputs=[mv_images, mv_show_images] | |
).success( | |
fn=make3d, | |
inputs=[mv_images], | |
outputs=[output_model_obj, output_model_glb] | |
) | |
demo.launch() |