Spaces:
Running
on
Zero
Running
on
Zero
Delete app.py
#9
by
TastyRice
- opened
app.py
DELETED
@@ -1,395 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import gc
|
3 |
-
import gradio as gr
|
4 |
-
import numpy as np
|
5 |
-
import torch
|
6 |
-
import json
|
7 |
-
import spaces
|
8 |
-
import config
|
9 |
-
import utils
|
10 |
-
import logging
|
11 |
-
from PIL import Image, PngImagePlugin
|
12 |
-
from datetime import datetime
|
13 |
-
from diffusers.models import AutoencoderKL
|
14 |
-
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
|
15 |
-
|
16 |
-
logging.basicConfig(level=logging.INFO)
|
17 |
-
logger = logging.getLogger(__name__)
|
18 |
-
|
19 |
-
DESCRIPTION = "Animagine XL 3.1"
|
20 |
-
if not torch.cuda.is_available():
|
21 |
-
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU. </p>"
|
22 |
-
IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1"
|
23 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
24 |
-
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
|
25 |
-
MIN_IMAGE_SIZE = int(os.getenv("MIN_IMAGE_SIZE", "512"))
|
26 |
-
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
|
27 |
-
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
28 |
-
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
29 |
-
OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./outputs")
|
30 |
-
|
31 |
-
MODEL = os.getenv(
|
32 |
-
"MODEL",
|
33 |
-
"https://huggingface.co/cagliostrolab/animagine-xl-3.1/blob/main/animagine-xl-3.1.safetensors",
|
34 |
-
)
|
35 |
-
|
36 |
-
torch.backends.cudnn.deterministic = True
|
37 |
-
torch.backends.cudnn.benchmark = False
|
38 |
-
|
39 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
40 |
-
|
41 |
-
|
42 |
-
def load_pipeline(model_name):
|
43 |
-
vae = AutoencoderKL.from_pretrained(
|
44 |
-
"madebyollin/sdxl-vae-fp16-fix",
|
45 |
-
torch_dtype=torch.float16,
|
46 |
-
)
|
47 |
-
pipeline = (
|
48 |
-
StableDiffusionXLPipeline.from_single_file
|
49 |
-
if MODEL.endswith(".safetensors")
|
50 |
-
else StableDiffusionXLPipeline.from_pretrained
|
51 |
-
)
|
52 |
-
|
53 |
-
pipe = pipeline(
|
54 |
-
model_name,
|
55 |
-
vae=vae,
|
56 |
-
torch_dtype=torch.float16,
|
57 |
-
custom_pipeline="lpw_stable_diffusion_xl",
|
58 |
-
use_safetensors=True,
|
59 |
-
add_watermarker=False,
|
60 |
-
use_auth_token=HF_TOKEN,
|
61 |
-
)
|
62 |
-
|
63 |
-
pipe.to(device)
|
64 |
-
return pipe
|
65 |
-
|
66 |
-
|
67 |
-
@spaces.GPU
|
68 |
-
def generate(
|
69 |
-
prompt: str,
|
70 |
-
negative_prompt: str = "",
|
71 |
-
seed: int = 0,
|
72 |
-
custom_width: int = 1024,
|
73 |
-
custom_height: int = 1024,
|
74 |
-
guidance_scale: float = 7.0,
|
75 |
-
num_inference_steps: int = 28,
|
76 |
-
sampler: str = "Euler a",
|
77 |
-
aspect_ratio_selector: str = "896 x 1152",
|
78 |
-
style_selector: str = "(None)",
|
79 |
-
quality_selector: str = "Standard v3.1",
|
80 |
-
use_upscaler: bool = False,
|
81 |
-
upscaler_strength: float = 0.55,
|
82 |
-
upscale_by: float = 1.5,
|
83 |
-
add_quality_tags: bool = True,
|
84 |
-
progress=gr.Progress(track_tqdm=True),
|
85 |
-
):
|
86 |
-
generator = utils.seed_everything(seed)
|
87 |
-
|
88 |
-
width, height = utils.aspect_ratio_handler(
|
89 |
-
aspect_ratio_selector,
|
90 |
-
custom_width,
|
91 |
-
custom_height,
|
92 |
-
)
|
93 |
-
|
94 |
-
prompt = utils.add_wildcard(prompt, wildcard_files)
|
95 |
-
|
96 |
-
prompt, negative_prompt = utils.preprocess_prompt(
|
97 |
-
quality_prompt, quality_selector, prompt, negative_prompt, add_quality_tags
|
98 |
-
)
|
99 |
-
prompt, negative_prompt = utils.preprocess_prompt(
|
100 |
-
styles, style_selector, prompt, negative_prompt
|
101 |
-
)
|
102 |
-
|
103 |
-
width, height = utils.preprocess_image_dimensions(width, height)
|
104 |
-
|
105 |
-
backup_scheduler = pipe.scheduler
|
106 |
-
pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, sampler)
|
107 |
-
|
108 |
-
if use_upscaler:
|
109 |
-
upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components)
|
110 |
-
metadata = {
|
111 |
-
"prompt": prompt,
|
112 |
-
"negative_prompt": negative_prompt,
|
113 |
-
"resolution": f"{width} x {height}",
|
114 |
-
"guidance_scale": guidance_scale,
|
115 |
-
"num_inference_steps": num_inference_steps,
|
116 |
-
"seed": seed,
|
117 |
-
"sampler": sampler,
|
118 |
-
"sdxl_style": style_selector,
|
119 |
-
"add_quality_tags": add_quality_tags,
|
120 |
-
"quality_tags": quality_selector,
|
121 |
-
}
|
122 |
-
|
123 |
-
if use_upscaler:
|
124 |
-
new_width = int(width * upscale_by)
|
125 |
-
new_height = int(height * upscale_by)
|
126 |
-
metadata["use_upscaler"] = {
|
127 |
-
"upscale_method": "nearest-exact",
|
128 |
-
"upscaler_strength": upscaler_strength,
|
129 |
-
"upscale_by": upscale_by,
|
130 |
-
"new_resolution": f"{new_width} x {new_height}",
|
131 |
-
}
|
132 |
-
else:
|
133 |
-
metadata["use_upscaler"] = None
|
134 |
-
metadata["Model"] = {
|
135 |
-
"Model": DESCRIPTION,
|
136 |
-
"Model hash": "e3c47aedb0",
|
137 |
-
}
|
138 |
-
|
139 |
-
logger.info(json.dumps(metadata, indent=4))
|
140 |
-
|
141 |
-
try:
|
142 |
-
if use_upscaler:
|
143 |
-
latents = pipe(
|
144 |
-
prompt=prompt,
|
145 |
-
negative_prompt=negative_prompt,
|
146 |
-
width=width,
|
147 |
-
height=height,
|
148 |
-
guidance_scale=guidance_scale,
|
149 |
-
num_inference_steps=num_inference_steps,
|
150 |
-
generator=generator,
|
151 |
-
output_type="latent",
|
152 |
-
).images
|
153 |
-
upscaled_latents = utils.upscale(latents, "nearest-exact", upscale_by)
|
154 |
-
images = upscaler_pipe(
|
155 |
-
prompt=prompt,
|
156 |
-
negative_prompt=negative_prompt,
|
157 |
-
image=upscaled_latents,
|
158 |
-
guidance_scale=guidance_scale,
|
159 |
-
num_inference_steps=num_inference_steps,
|
160 |
-
strength=upscaler_strength,
|
161 |
-
generator=generator,
|
162 |
-
output_type="pil",
|
163 |
-
).images
|
164 |
-
else:
|
165 |
-
images = pipe(
|
166 |
-
prompt=prompt,
|
167 |
-
negative_prompt=negative_prompt,
|
168 |
-
width=width,
|
169 |
-
height=height,
|
170 |
-
guidance_scale=guidance_scale,
|
171 |
-
num_inference_steps=num_inference_steps,
|
172 |
-
generator=generator,
|
173 |
-
output_type="pil",
|
174 |
-
).images
|
175 |
-
|
176 |
-
if images:
|
177 |
-
image_paths = [
|
178 |
-
utils.save_image(image, metadata, OUTPUT_DIR, IS_COLAB)
|
179 |
-
for image in images
|
180 |
-
]
|
181 |
-
|
182 |
-
for image_path in image_paths:
|
183 |
-
logger.info(f"Image saved as {image_path} with metadata")
|
184 |
-
|
185 |
-
return image_paths, metadata
|
186 |
-
except Exception as e:
|
187 |
-
logger.exception(f"An error occurred: {e}")
|
188 |
-
raise
|
189 |
-
finally:
|
190 |
-
if use_upscaler:
|
191 |
-
del upscaler_pipe
|
192 |
-
pipe.scheduler = backup_scheduler
|
193 |
-
utils.free_memory()
|
194 |
-
|
195 |
-
|
196 |
-
if torch.cuda.is_available():
|
197 |
-
pipe = load_pipeline(MODEL)
|
198 |
-
logger.info("Loaded on Device!")
|
199 |
-
else:
|
200 |
-
pipe = None
|
201 |
-
|
202 |
-
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in config.style_list}
|
203 |
-
quality_prompt = {
|
204 |
-
k["name"]: (k["prompt"], k["negative_prompt"]) for k in config.quality_prompt_list
|
205 |
-
}
|
206 |
-
|
207 |
-
wildcard_files = utils.load_wildcard_files("wildcard")
|
208 |
-
|
209 |
-
with gr.Blocks(css="style.css", theme="NoCrypt/[email protected]") as demo:
|
210 |
-
title = gr.HTML(
|
211 |
-
f"""<h1><span>{DESCRIPTION}</span></h1>""",
|
212 |
-
elem_id="title",
|
213 |
-
)
|
214 |
-
gr.Markdown(
|
215 |
-
f"""Gradio demo for [cagliostrolab/animagine-xl-3.1](https://huggingface.co/cagliostrolab/animagine-xl-3.1)""",
|
216 |
-
elem_id="subtitle",
|
217 |
-
)
|
218 |
-
gr.DuplicateButton(
|
219 |
-
value="Duplicate Space for private use",
|
220 |
-
elem_id="duplicate-button",
|
221 |
-
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
222 |
-
)
|
223 |
-
with gr.Row():
|
224 |
-
with gr.Column(scale=2):
|
225 |
-
with gr.Tab("Txt2img"):
|
226 |
-
with gr.Group():
|
227 |
-
prompt = gr.Text(
|
228 |
-
label="Prompt",
|
229 |
-
max_lines=5,
|
230 |
-
placeholder="Enter your prompt",
|
231 |
-
)
|
232 |
-
negative_prompt = gr.Text(
|
233 |
-
label="Negative Prompt",
|
234 |
-
max_lines=5,
|
235 |
-
placeholder="Enter a negative prompt",
|
236 |
-
)
|
237 |
-
with gr.Accordion(label="Quality Tags", open=True):
|
238 |
-
add_quality_tags = gr.Checkbox(
|
239 |
-
label="Add Quality Tags", value=True
|
240 |
-
)
|
241 |
-
quality_selector = gr.Dropdown(
|
242 |
-
label="Quality Tags Presets",
|
243 |
-
interactive=True,
|
244 |
-
choices=list(quality_prompt.keys()),
|
245 |
-
value="Standard v3.1",
|
246 |
-
)
|
247 |
-
with gr.Tab("Advanced Settings"):
|
248 |
-
with gr.Group():
|
249 |
-
style_selector = gr.Radio(
|
250 |
-
label="Style Preset",
|
251 |
-
container=True,
|
252 |
-
interactive=True,
|
253 |
-
choices=list(styles.keys()),
|
254 |
-
value="(None)",
|
255 |
-
)
|
256 |
-
with gr.Group():
|
257 |
-
aspect_ratio_selector = gr.Radio(
|
258 |
-
label="Aspect Ratio",
|
259 |
-
choices=config.aspect_ratios,
|
260 |
-
value="896 x 1152",
|
261 |
-
container=True,
|
262 |
-
)
|
263 |
-
with gr.Group(visible=False) as custom_resolution:
|
264 |
-
with gr.Row():
|
265 |
-
custom_width = gr.Slider(
|
266 |
-
label="Width",
|
267 |
-
minimum=MIN_IMAGE_SIZE,
|
268 |
-
maximum=MAX_IMAGE_SIZE,
|
269 |
-
step=8,
|
270 |
-
value=1024,
|
271 |
-
)
|
272 |
-
custom_height = gr.Slider(
|
273 |
-
label="Height",
|
274 |
-
minimum=MIN_IMAGE_SIZE,
|
275 |
-
maximum=MAX_IMAGE_SIZE,
|
276 |
-
step=8,
|
277 |
-
value=1024,
|
278 |
-
)
|
279 |
-
with gr.Group():
|
280 |
-
use_upscaler = gr.Checkbox(label="Use Upscaler", value=False)
|
281 |
-
with gr.Row() as upscaler_row:
|
282 |
-
upscaler_strength = gr.Slider(
|
283 |
-
label="Strength",
|
284 |
-
minimum=0,
|
285 |
-
maximum=1,
|
286 |
-
step=0.05,
|
287 |
-
value=0.55,
|
288 |
-
visible=False,
|
289 |
-
)
|
290 |
-
upscale_by = gr.Slider(
|
291 |
-
label="Upscale by",
|
292 |
-
minimum=1,
|
293 |
-
maximum=1.5,
|
294 |
-
step=0.1,
|
295 |
-
value=1.5,
|
296 |
-
visible=False,
|
297 |
-
)
|
298 |
-
with gr.Group():
|
299 |
-
sampler = gr.Dropdown(
|
300 |
-
label="Sampler",
|
301 |
-
choices=config.sampler_list,
|
302 |
-
interactive=True,
|
303 |
-
value="Euler a",
|
304 |
-
)
|
305 |
-
with gr.Group():
|
306 |
-
seed = gr.Slider(
|
307 |
-
label="Seed", minimum=0, maximum=utils.MAX_SEED, step=1, value=0
|
308 |
-
)
|
309 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
310 |
-
with gr.Group():
|
311 |
-
with gr.Row():
|
312 |
-
guidance_scale = gr.Slider(
|
313 |
-
label="Guidance scale",
|
314 |
-
minimum=1,
|
315 |
-
maximum=12,
|
316 |
-
step=0.1,
|
317 |
-
value=7.0,
|
318 |
-
)
|
319 |
-
num_inference_steps = gr.Slider(
|
320 |
-
label="Number of inference steps",
|
321 |
-
minimum=1,
|
322 |
-
maximum=50,
|
323 |
-
step=1,
|
324 |
-
value=28,
|
325 |
-
)
|
326 |
-
with gr.Column(scale=3):
|
327 |
-
with gr.Blocks():
|
328 |
-
run_button = gr.Button("Generate", variant="primary")
|
329 |
-
result = gr.Gallery(
|
330 |
-
label="Result",
|
331 |
-
columns=1,
|
332 |
-
height='100%',
|
333 |
-
preview=True,
|
334 |
-
show_label=False
|
335 |
-
)
|
336 |
-
with gr.Accordion(label="Generation Parameters", open=False):
|
337 |
-
gr_metadata = gr.JSON(label="metadata", show_label=False)
|
338 |
-
gr.Examples(
|
339 |
-
examples=config.examples,
|
340 |
-
inputs=prompt,
|
341 |
-
outputs=[result, gr_metadata],
|
342 |
-
fn=lambda *args, **kwargs: generate(*args, use_upscaler=True, **kwargs),
|
343 |
-
cache_examples=CACHE_EXAMPLES,
|
344 |
-
)
|
345 |
-
use_upscaler.change(
|
346 |
-
fn=lambda x: [gr.update(visible=x), gr.update(visible=x)],
|
347 |
-
inputs=use_upscaler,
|
348 |
-
outputs=[upscaler_strength, upscale_by],
|
349 |
-
queue=False,
|
350 |
-
api_name=False,
|
351 |
-
)
|
352 |
-
aspect_ratio_selector.change(
|
353 |
-
fn=lambda x: gr.update(visible=x == "Custom"),
|
354 |
-
inputs=aspect_ratio_selector,
|
355 |
-
outputs=custom_resolution,
|
356 |
-
queue=False,
|
357 |
-
api_name=False,
|
358 |
-
)
|
359 |
-
|
360 |
-
gr.on(
|
361 |
-
triggers=[
|
362 |
-
prompt.submit,
|
363 |
-
negative_prompt.submit,
|
364 |
-
run_button.click,
|
365 |
-
],
|
366 |
-
fn=utils.randomize_seed_fn,
|
367 |
-
inputs=[seed, randomize_seed],
|
368 |
-
outputs=seed,
|
369 |
-
queue=False,
|
370 |
-
api_name=False,
|
371 |
-
).then(
|
372 |
-
fn=generate,
|
373 |
-
inputs=[
|
374 |
-
prompt,
|
375 |
-
negative_prompt,
|
376 |
-
seed,
|
377 |
-
custom_width,
|
378 |
-
custom_height,
|
379 |
-
guidance_scale,
|
380 |
-
num_inference_steps,
|
381 |
-
sampler,
|
382 |
-
aspect_ratio_selector,
|
383 |
-
style_selector,
|
384 |
-
quality_selector,
|
385 |
-
use_upscaler,
|
386 |
-
upscaler_strength,
|
387 |
-
upscale_by,
|
388 |
-
add_quality_tags,
|
389 |
-
],
|
390 |
-
outputs=[result, gr_metadata],
|
391 |
-
api_name="run",
|
392 |
-
)
|
393 |
-
|
394 |
-
if __name__ == "__main__":
|
395 |
-
demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|