test / app.py
bobrooos's picture
Update app.py
179c8fb
raw
history blame
3.08 kB
import gradio as gr
from transformers import pipeline
# Using the latest version of Gradio and Transformers
# We want to expand the interface to include a reverse translation
# We want to use the Helsinki-NLP/opus-mt-tc-big-he-en model for the reverse translation
# A dropdown menu for selecting the model
model_names = ["Helsinki-NLP/opus-mt-en-he", "Helsinki-NLP/opus-mt-tc-big-he-en"]
model_name = gr.inputs.Dropdown(model_names, label="Model")
# Name the dropdown options
model_name.choices = ["English to Hebrew", "Hebrew to English"]
# An output text box displaying the translated text and reverse translated text
translation = gr.outputs.Textbox(label="Translation")
reverse_translation = gr.outputs.Textbox(label="Reverse Translation")
# A function for translating text
def translate(model_name, text):
# Create a pipeline for translating from English to Hebrew
pipe = pipeline("translation", model=model_name)
# Return the translation
return pipe(text)[0]["translation_text"]
# Create an interface for translating text
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-he")
model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-he")
def translate(model_name, text):
# Create a pipeline for translating from English to Hebrew
#Console out the model name
print(model_name)
if model_name == "English to Hebrew":
forward_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-he")
forward_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-he")
reverse_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-tc-big-he-en")
reverse_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-tc-big-he-en")
elif model_name == "Hebrew to English":
forward_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-tc-big-he-en")
forward_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-tc-big-he-en")
reverse_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-he")
reverse_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-he")
else:
raise ValueError("Invalid model name")
# Forward translation
forward_input_ids = forward_tokenizer.encode(text, return_tensors="pt")
forward_outputs = forward_model.generate(forward_input_ids)
forward_translation = forward_tokenizer.decode(forward_outputs[0], skip_special_tokens=True)
# Reverse translation
reverse_input_ids = reverse_tokenizer.encode(forward_translation, return_tensors="pt")
reverse_outputs = reverse_model.generate(reverse_input_ids)
reverse_translation = reverse_tokenizer.decode(reverse_outputs[0], skip_special_tokens=True)
return forward_translation, reverse_translation
iface = gr.Interface(fn=translate, inputs=[model_name, "text"], outputs=[translation, reverse_translation])
# Launch the interface
iface.launch(share=False)