import gradio as gr from transformers import pipeline # Using the latest version of Gradio and Transformers # We want to expand the interface to include a reverse translation # We want to use the Helsinki-NLP/opus-mt-tc-big-he-en model for the reverse translation # A dropdown menu for selecting the model model_names = ["Helsinki-NLP/opus-mt-en-he", "Helsinki-NLP/opus-mt-tc-big-he-en"] model_name = gr.inputs.Dropdown(model_names, label="Model") # Name the dropdown options model_name.choices = ["English to Hebrew", "Hebrew to English"] # An output text box displaying the translated text and reverse translated text translation = gr.outputs.Textbox(label="Translation") reverse_translation = gr.outputs.Textbox(label="Reverse Translation") # A function for translating text def translate(model_name, text): # Create a pipeline for translating from English to Hebrew pipe = pipeline("translation", model=model_name) # Return the translation return pipe(text)[0]["translation_text"] # Create an interface for translating text from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-he") model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-he") def translate(model_name, text): # Create a pipeline for translating from English to Hebrew #Console out the model name print(model_name) if model_name == "English to Hebrew": forward_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-he") forward_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-he") reverse_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-tc-big-he-en") reverse_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-tc-big-he-en") elif model_name == "Hebrew to English": forward_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-tc-big-he-en") forward_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-tc-big-he-en") reverse_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-he") reverse_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-he") else: raise ValueError("Invalid model name") # Forward translation forward_input_ids = forward_tokenizer.encode(text, return_tensors="pt") forward_outputs = forward_model.generate(forward_input_ids) forward_translation = forward_tokenizer.decode(forward_outputs[0], skip_special_tokens=True) # Reverse translation reverse_input_ids = reverse_tokenizer.encode(forward_translation, return_tensors="pt") reverse_outputs = reverse_model.generate(reverse_input_ids) reverse_translation = reverse_tokenizer.decode(reverse_outputs[0], skip_special_tokens=True) return forward_translation, reverse_translation iface = gr.Interface(fn=translate, inputs=[model_name, "text"], outputs=[translation, reverse_translation]) # Launch the interface iface.launch(share=False)