Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,428 Bytes
045d323 19f98dc b1d8999 19f98dc 4d0ad40 e14bb0a 19f98dc 9f7976a e14bb0a 19f98dc c2cf1ee b1d8999 4d0ad40 19f98dc 6e81bdd 19f98dc 2b0aade 045d323 19f98dc bf9e848 19f98dc 0c9f948 b1d8999 4788158 045d323 4788158 045d323 4788158 6e81bdd 02fd27c 4788158 02fd27c 4788158 02fd27c 4788158 02fd27c 1447103 19f98dc 6e81bdd 3cc9869 73d42f6 b1d8999 6e81bdd 3cc9869 19f98dc b1d8999 6e81bdd 19f98dc 6e81bdd 02fd27c 045d323 02fd27c 6e81bdd 045d323 6e81bdd b1d8999 19f98dc 045d323 6e81bdd 045d323 6e81bdd 19f98dc 045d323 6e81bdd 4788158 6e81bdd b1d8999 19f98dc 6e81bdd 19f98dc b1d8999 19f98dc 6e81bdd 045d323 19f98dc b1d8999 19f98dc 6e81bdd 045d323 9f7976a cc92341 8d39edd 4553b9e 19f98dc 4d0ad40 19f98dc 6e81bdd 97e15b8 19f98dc c584662 d97d8b8 b1d8999 4d0ad40 c584662 6e81bdd 19f98dc 6e81bdd 19f98dc 4788158 045d323 6e81bdd 045d323 6e81bdd 19f98dc b1d8999 02fd27c b1d8999 19f98dc b1d8999 4d0ad40 b1d8999 4d0ad40 19f98dc b1d8999 6e81bdd b1d8999 c11f3e7 6e81bdd b1d8999 6e81bdd b1d8999 c11f3e7 6e81bdd c11f3e7 b1d8999 19f98dc b1d8999 4d0ad40 b1d8999 6e81bdd b1d8999 4d0ad40 b1d8999 4d0ad40 b1d8999 c11f3e7 b1d8999 6e81bdd b1d8999 4d0ad40 b1d8999 6e81bdd b1d8999 6e81bdd 4d0ad40 6e81bdd 19f98dc 6e81bdd b1d8999 19f98dc b1d8999 6e81bdd 19f98dc 4d0ad40 19f98dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
import math
import secrets
from pathlib import Path
from typing import cast
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import FluxFillPipeline
from gradio.components.image_editor import EditorValue
from PIL import Image, ImageFilter, ImageOps
DEVICE = "cuda"
EXAMPLES_DIR = Path(__file__).parent / "examples"
MAX_SEED = np.iinfo(np.int32).max
SYSTEM_PROMPT = r"""This two-panel split-frame image showcases a furniture in as a product shot versus styled in a room.
[LEFT] standalone product shot image the furniture on a white background.
[RIGHT] integrated example within a room scene."""
MASK_CONTEXT_PADDING = 16 * 8
if not torch.cuda.is_available():
def _dummy_pipe(image: Image.Image, *args, **kwargs): # noqa: ARG001
# return {"images": [image]} # noqa: ERA001
blue_image = Image.new("RGB", image.size, (0, 0, 255))
return {"images": [blue_image]}
pipe = _dummy_pipe
else:
state_dict, network_alphas = FluxFillPipeline.lora_state_dict(
pretrained_model_name_or_path_or_dict="blanchon/FluxFillFurniture",
weight_name="pytorch_lora_weights3.safetensors",
return_alphas=True,
)
if not all(("lora" in key or "dora_scale" in key) for key in state_dict):
msg = "Invalid LoRA checkpoint."
raise ValueError(msg)
pipe = FluxFillPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
).to(DEVICE)
FluxFillPipeline.load_lora_into_transformer(
state_dict=state_dict,
network_alphas=network_alphas,
transformer=pipe.transformer,
)
pipe.to(DEVICE)
def make_example(image_path: Path, mask_path: Path) -> EditorValue:
background_image = Image.open(image_path)
background_image = background_image.convert("RGB")
background = np.array(background_image)
mask_image = Image.open(mask_path)
mask_image = mask_image.convert("RGB")
mask = np.array(mask_image)
mask = mask[:, :, 0]
mask = np.where(mask == 255, 0, 255) # noqa: PLR2004
if background.shape[0] != mask.shape[0] or background.shape[1] != mask.shape[1]:
msg = "Background and mask must have the same shape"
raise ValueError(msg)
layer = np.zeros((background.shape[0], background.shape[1], 4), dtype=np.uint8)
layer[:, :, 3] = mask
composite = np.zeros((background.shape[0], background.shape[1], 4), dtype=np.uint8)
composite[:, :, :3] = background
composite[:, :, 3] = np.where(mask == 255, 0, 255) # noqa: PLR2004
return {
"background": background,
"layers": [layer],
"composite": composite,
}
def pad(
image: Image.Image,
size: tuple[int, int],
method: int = Image.Resampling.BICUBIC,
color: str | int | tuple[int, ...] | None = None,
centering: tuple[float, float] = (1, 1),
) -> tuple[Image.Image, tuple[int, int]]:
resized = ImageOps.contain(image, size, method)
resized_size = resized.size
if resized_size == size:
out = resized
else:
out = Image.new(image.mode, size, color)
if resized.palette:
palette = resized.getpalette()
if palette is not None:
out.putpalette(palette)
if resized.width != size[0]:
x = round((size[0] - resized.width) * max(0, min(centering[0], 1)))
out.paste(resized, (x, 0))
else:
y = round((size[1] - resized.height) * max(0, min(centering[1], 1)))
out.paste(resized, (0, y))
return out, resized_size
def unpad(
padded_image: Image.Image,
padded_size: tuple[int, int],
original_size: tuple[int, int],
centering: tuple[float, float] = (1, 1),
method: int = Image.Resampling.BICUBIC,
) -> Image.Image:
width, height = padded_image.size
padded_width, padded_height = padded_size
# Calculate the cropping box based on centering
left = round((width - padded_width) * centering[0])
top = round((height - padded_height) * centering[1])
right = left + padded_width
bottom = top + padded_height
# Crop the image to remove the padding
cropped_image = padded_image.crop((left, top, right, bottom))
# Resize the cropped image to match the original size
resized_image = cropped_image.resize(original_size, method)
return resized_image
def adjust_bbox_to_divisible_16(
x_min: int,
y_min: int,
x_max: int,
y_max: int,
width: int,
height: int,
padding: int = MASK_CONTEXT_PADDING,
) -> tuple[int, int, int, int]:
# Add context padding
x_min = max(x_min - padding, 0)
y_min = max(y_min - padding, 0)
x_max = min(x_max + padding, width)
y_max = min(y_max + padding, height)
# Ensure bbox dimensions are divisible by 16
def make_divisible_16(val_min, val_max, max_limit):
size = val_max - val_min
if size % 16 != 0:
adjustment = 16 - (size % 16)
val_min = max(val_min - adjustment // 2, 0)
val_max = min(val_max + adjustment // 2, max_limit)
return val_min, val_max
x_min, x_max = make_divisible_16(x_min, x_max, width)
y_min, y_max = make_divisible_16(y_min, y_max, height)
# Re-check divisibility after bounds adjustment
x_min = max(x_min, 0)
y_min = max(y_min, 0)
x_max = min(x_max, width)
y_max = min(y_max, height)
# Final divisibility check (in case constraints pushed it off again)
x_min, x_max = make_divisible_16(x_min, x_max, width)
y_min, y_max = make_divisible_16(y_min, y_max, height)
return x_min, y_min, x_max, y_max
@spaces.GPU(duration=150)
def infer(
furniture_image_input: Image.Image,
room_image_input: EditorValue,
furniture_prompt: str = "",
seed: int = 42,
randomize_seed: bool = False,
guidance_scale: float = 3.5,
num_inference_steps: int = 20,
max_dimension: int = 720,
num_images_per_prompt: int = 2,
progress: gr.Progress = gr.Progress(track_tqdm=True), # noqa: ARG001, B008
):
# Ensure max_dimension is a multiple of 16 (for VAE)
max_dimension = (max_dimension // 16) * 16
room_image = room_image_input["background"]
if room_image is None:
msg = "Room image is required"
raise ValueError(msg)
room_image = cast("Image.Image", room_image)
room_mask = room_image_input["layers"][0]
if room_mask is None:
msg = "Room mask is required"
raise ValueError(msg)
room_mask = cast("Image.Image", room_mask)
mask_bbox_x_min, mask_bbox_y_min, mask_bbox_x_max, mask_bbox_y_max = (
adjust_bbox_to_divisible_16(
*room_mask.getbbox(alpha_only=False),
width=room_mask.width,
height=room_mask.height,
padding=MASK_CONTEXT_PADDING,
)
)
room_image_cropped = room_image.crop((
mask_bbox_x_min,
mask_bbox_y_min,
mask_bbox_x_max,
mask_bbox_y_max,
))
room_image_padded, room_image_padded_size = pad(
room_image_cropped,
(max_dimension, max_dimension),
)
# grow_and_blur_mask
grow_pixels = 10
sigma_grow = grow_pixels / 4
kernel_size_grow = math.ceil(sigma_grow * 1.5 + 1)
room_mask_grow = room_mask.filter(
ImageFilter.MaxFilter(size=2 * kernel_size_grow + 1)
)
blur_pixels = 33
sigma_blur = blur_pixels / 4
kernel_size_blur = math.ceil(sigma_blur * 1.5 + 1)
room_mask_blurred = room_mask_grow.filter(
ImageFilter.GaussianBlur(radius=kernel_size_blur)
)
room_mask_cropped = room_mask_blurred.crop((
mask_bbox_x_min,
mask_bbox_y_min,
mask_bbox_x_max,
mask_bbox_y_max,
))
room_mask_padded, _ = pad(
room_mask_cropped,
(max_dimension, max_dimension),
)
room_image_padded.save("room_image_padded.png")
room_mask_padded.save("room_mask_padded.png")
furniture_image, _ = pad(
furniture_image_input,
(max_dimension, max_dimension),
)
furniture_mask = Image.new("RGB", (max_dimension, max_dimension), (255, 255, 255))
image = Image.new(
"RGB",
(max_dimension * 2, max_dimension),
(255, 255, 255),
)
# Paste on the center of the image
image.paste(furniture_image, (0, 0))
image.paste(room_image_padded, (max_dimension, 0))
mask = Image.new(
"RGB",
(max_dimension * 2, max_dimension),
(255, 255, 255),
)
mask.paste(furniture_mask, (0, 0))
mask.paste(room_mask_padded, (max_dimension, 0), room_mask_padded)
# Invert the mask
mask = ImageOps.invert(mask)
# Blur the mask
mask = mask.filter(ImageFilter.GaussianBlur(radius=10))
# Convert to 3 channel
mask = mask.convert("L")
if randomize_seed:
seed = secrets.randbelow(MAX_SEED)
prompt = (
furniture_prompt + ".\n" + SYSTEM_PROMPT if furniture_prompt else SYSTEM_PROMPT
)
image.save("image.png")
mask.save("mask.png")
results_images = pipe(
prompt=prompt,
image=image,
mask_image=mask,
height=max_dimension,
width=max_dimension * 2,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=num_images_per_prompt,
generator=torch.Generator("cpu").manual_seed(seed),
)["images"]
final_images = []
for image in results_images:
final_image = room_image.copy()
image_generated = unpad(
image,
room_image_padded_size,
(
mask_bbox_x_max - mask_bbox_x_min,
mask_bbox_y_max - mask_bbox_y_min,
),
)
# Paste the image on the room image as the crop was done
# on the room image
final_image.paste(
image_generated,
(mask_bbox_x_min, mask_bbox_y_min),
room_mask_cropped,
)
final_images.append(final_image)
return final_images, seed
intro_markdown = r"""
<div>
<div>
<div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 40px;">
<b>AnyFurnish</b>
</div>
<br>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href="https://github.com/julien-blanchon/"><img src="https://img.shields.io/static/v1?label=Github Report&message=Github&color=green"></a>  
</div>
<br>
<div style="display: flex; text-align: center; font-size: 14px; padding-right: 300px; padding-left: 300px;">
AnyFurnish is a tool that allows you to generate furniture images using Flux.1 Fill Dev.
You can upload a furniture image and a room image, and the tool will generate a new image with the furniture in the room.
</div>
</div>
</div>
"""
css = r"""
#col-left {
margin: 0 auto;
max-width: 430px;
}
#col-mid {
margin: 0 auto;
max-width: 430px;
}
#col-right {
margin: 0 auto;
max-width: 430px;
}
#col-showcase {
margin: 0 auto;
max-width: 1100px;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(intro_markdown)
with gr.Row():
with gr.Column(elem_id="col-left"):
gr.HTML(
"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
<div>
Step 1. Upload a furniture image ⬇️
</div>
</div>
""",
max_height=50,
)
furniture_image_input = gr.Image(
label="Furniture Image",
type="pil",
sources=["upload"],
image_mode="RGB",
height=500,
)
furniture_examples = gr.Examples(
examples=[
EXAMPLES_DIR / "1" / "furniture_image.png",
EXAMPLES_DIR / "2" / "furniture_image.png",
],
examples_per_page=12,
inputs=[furniture_image_input],
)
with gr.Column(elem_id="col-mid"):
gr.HTML(
"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
<div>
Step 2. Upload a room image ⬇️
</div>
</div>
""",
max_height=50,
)
room_image_input = gr.ImageEditor(
label="Room Image - Draw mask for inpainting",
type="pil",
sources=["upload"],
image_mode="RGBA",
layers=False,
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"),
height=500,
)
room_examples = gr.Examples(
examples=[
make_example(
EXAMPLES_DIR / "1" / "room_image.png",
EXAMPLES_DIR / "1" / "room_mask.png",
),
make_example(
EXAMPLES_DIR / "2" / "room_image.png",
EXAMPLES_DIR / "2" / "room_mask.png",
),
],
inputs=[room_image_input],
)
with gr.Column(elem_id="col-right"):
gr.HTML(
"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
<div>
Step 3. Press Run to launch
</div>
</div>
""",
max_height=50,
)
results = gr.Gallery(
label="Results",
show_label=False,
columns=2,
height=500,
)
run_button = gr.Button("Run")
# Reset the results when the run button is clicked
run_button.click(
outputs=results,
fn=lambda: None,
)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
furniture_prompt = gr.Text(
label="Prompt",
max_lines=1,
placeholder="Enter a custom furniture description (optional)",
container=False,
)
with gr.Column():
max_dimension = gr.Slider(
label="Max Dimension",
minimum=512,
maximum=1024,
step=128,
value=720,
)
num_images_per_prompt = gr.Slider(
label="Number of images per prompt",
minimum=1,
maximum=4,
step=1,
value=2,
)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=30,
step=0.5,
# value=50, # noqa: ERA001
value=30,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=20,
)
with gr.Column(elem_id="col-showcase"):
gr.HTML("""
<div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
<div> </div>
<br>
<div>
AnyFurnish examples in pairs of furniture and room images
</div>
</div>
""")
show_case = gr.Examples(
examples=[
[
EXAMPLES_DIR / "1" / "furniture_image.png",
make_example(
EXAMPLES_DIR / "1" / "room_image.png",
EXAMPLES_DIR / "1" / "room_mask.png",
),
],
[
EXAMPLES_DIR / "2" / "furniture_image.png",
make_example(
EXAMPLES_DIR / "2" / "room_image.png",
EXAMPLES_DIR / "2" / "room_mask.png",
),
],
],
inputs=[furniture_image_input, room_image_input],
label=None,
)
gr.on(
triggers=[run_button.click],
fn=infer,
inputs=[
furniture_image_input,
room_image_input,
furniture_prompt,
seed,
randomize_seed,
guidance_scale,
num_inference_steps,
max_dimension,
num_images_per_prompt,
],
outputs=[results, seed],
)
demo.launch()
|