File size: 17,428 Bytes
045d323
19f98dc
b1d8999
19f98dc
 
4d0ad40
 
e14bb0a
 
19f98dc
 
9f7976a
e14bb0a
19f98dc
c2cf1ee
b1d8999
 
4d0ad40
19f98dc
 
 
 
 
6e81bdd
 
19f98dc
 
2b0aade
045d323
 
 
19f98dc
 
 
 
 
 
 
 
 
 
 
 
 
bf9e848
 
 
19f98dc
 
 
 
 
 
 
0c9f948
b1d8999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4788158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
045d323
4788158
 
045d323
4788158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e81bdd
 
02fd27c
4788158
 
 
 
 
 
 
 
 
02fd27c
 
 
 
 
 
4788158
 
 
 
 
 
 
 
 
 
 
 
02fd27c
 
 
 
 
4788158
 
 
 
02fd27c
 
 
1447103
19f98dc
6e81bdd
 
 
3cc9869
 
 
73d42f6
b1d8999
6e81bdd
3cc9869
19f98dc
b1d8999
 
 
6e81bdd
 
19f98dc
 
6e81bdd
 
 
 
 
 
 
 
02fd27c
 
045d323
 
 
02fd27c
 
 
6e81bdd
 
 
 
 
 
 
045d323
6e81bdd
b1d8999
19f98dc
 
045d323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e81bdd
 
 
 
 
045d323
6e81bdd
 
19f98dc
 
045d323
 
6e81bdd
4788158
6e81bdd
b1d8999
19f98dc
 
6e81bdd
19f98dc
 
 
b1d8999
19f98dc
 
 
6e81bdd
045d323
19f98dc
 
 
b1d8999
19f98dc
 
6e81bdd
045d323
9f7976a
 
 
cc92341
8d39edd
4553b9e
19f98dc
4d0ad40
19f98dc
 
6e81bdd
 
 
97e15b8
 
19f98dc
c584662
 
d97d8b8
b1d8999
 
4d0ad40
c584662
6e81bdd
19f98dc
 
 
6e81bdd
 
 
19f98dc
4788158
 
045d323
6e81bdd
 
 
 
 
 
 
045d323
 
 
 
 
6e81bdd
 
 
19f98dc
 
b1d8999
 
 
 
 
 
 
 
 
 
 
 
02fd27c
b1d8999
 
 
 
19f98dc
 
b1d8999
 
4d0ad40
b1d8999
 
 
 
 
 
 
 
 
 
 
 
 
4d0ad40
 
 
19f98dc
b1d8999
 
 
 
 
 
 
 
 
 
 
 
 
 
6e81bdd
b1d8999
 
 
 
 
 
c11f3e7
 
 
 
 
 
6e81bdd
b1d8999
 
 
 
 
 
 
 
 
 
 
 
6e81bdd
b1d8999
 
 
 
 
 
 
 
c11f3e7
 
 
 
 
 
 
 
 
 
 
6e81bdd
c11f3e7
b1d8999
 
 
 
 
 
 
 
 
 
 
19f98dc
 
 
 
b1d8999
4d0ad40
b1d8999
6e81bdd
 
 
 
 
 
b1d8999
 
 
 
 
4d0ad40
b1d8999
4d0ad40
b1d8999
c11f3e7
 
 
 
 
 
 
b1d8999
 
 
 
 
 
 
 
 
6e81bdd
 
 
 
 
 
 
 
b1d8999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d0ad40
b1d8999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e81bdd
b1d8999
 
6e81bdd
4d0ad40
6e81bdd
19f98dc
 
6e81bdd
 
b1d8999
19f98dc
 
 
 
b1d8999
6e81bdd
19f98dc
 
4d0ad40
 
19f98dc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
import math
import secrets
from pathlib import Path
from typing import cast

import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import FluxFillPipeline
from gradio.components.image_editor import EditorValue
from PIL import Image, ImageFilter, ImageOps

DEVICE = "cuda"

EXAMPLES_DIR = Path(__file__).parent / "examples"

MAX_SEED = np.iinfo(np.int32).max

SYSTEM_PROMPT = r"""This two-panel split-frame image showcases a furniture in as a product shot versus styled in a room.
[LEFT] standalone product shot image the furniture on a white background.
[RIGHT] integrated example within a room scene."""

MASK_CONTEXT_PADDING = 16 * 8

if not torch.cuda.is_available():

    def _dummy_pipe(image: Image.Image, *args, **kwargs):  # noqa: ARG001
        # return {"images": [image]}  # noqa: ERA001
        blue_image = Image.new("RGB", image.size, (0, 0, 255))
        return {"images": [blue_image]}

    pipe = _dummy_pipe
else:
    state_dict, network_alphas = FluxFillPipeline.lora_state_dict(
        pretrained_model_name_or_path_or_dict="blanchon/FluxFillFurniture",
        weight_name="pytorch_lora_weights3.safetensors",
        return_alphas=True,
    )

    if not all(("lora" in key or "dora_scale" in key) for key in state_dict):
        msg = "Invalid LoRA checkpoint."
        raise ValueError(msg)

    pipe = FluxFillPipeline.from_pretrained(
        "black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
    ).to(DEVICE)
    FluxFillPipeline.load_lora_into_transformer(
        state_dict=state_dict,
        network_alphas=network_alphas,
        transformer=pipe.transformer,
    )
    pipe.to(DEVICE)


def make_example(image_path: Path, mask_path: Path) -> EditorValue:
    background_image = Image.open(image_path)
    background_image = background_image.convert("RGB")
    background = np.array(background_image)

    mask_image = Image.open(mask_path)
    mask_image = mask_image.convert("RGB")

    mask = np.array(mask_image)
    mask = mask[:, :, 0]
    mask = np.where(mask == 255, 0, 255)  # noqa: PLR2004

    if background.shape[0] != mask.shape[0] or background.shape[1] != mask.shape[1]:
        msg = "Background and mask must have the same shape"
        raise ValueError(msg)

    layer = np.zeros((background.shape[0], background.shape[1], 4), dtype=np.uint8)
    layer[:, :, 3] = mask

    composite = np.zeros((background.shape[0], background.shape[1], 4), dtype=np.uint8)
    composite[:, :, :3] = background
    composite[:, :, 3] = np.where(mask == 255, 0, 255)  # noqa: PLR2004

    return {
        "background": background,
        "layers": [layer],
        "composite": composite,
    }


def pad(
    image: Image.Image,
    size: tuple[int, int],
    method: int = Image.Resampling.BICUBIC,
    color: str | int | tuple[int, ...] | None = None,
    centering: tuple[float, float] = (1, 1),
) -> tuple[Image.Image, tuple[int, int]]:
    resized = ImageOps.contain(image, size, method)
    resized_size = resized.size
    if resized_size == size:
        out = resized
    else:
        out = Image.new(image.mode, size, color)
        if resized.palette:
            palette = resized.getpalette()
            if palette is not None:
                out.putpalette(palette)
        if resized.width != size[0]:
            x = round((size[0] - resized.width) * max(0, min(centering[0], 1)))
            out.paste(resized, (x, 0))
        else:
            y = round((size[1] - resized.height) * max(0, min(centering[1], 1)))
            out.paste(resized, (0, y))
    return out, resized_size


def unpad(
    padded_image: Image.Image,
    padded_size: tuple[int, int],
    original_size: tuple[int, int],
    centering: tuple[float, float] = (1, 1),
    method: int = Image.Resampling.BICUBIC,
) -> Image.Image:
    width, height = padded_image.size
    padded_width, padded_height = padded_size

    # Calculate the cropping box based on centering
    left = round((width - padded_width) * centering[0])
    top = round((height - padded_height) * centering[1])
    right = left + padded_width
    bottom = top + padded_height

    # Crop the image to remove the padding
    cropped_image = padded_image.crop((left, top, right, bottom))

    # Resize the cropped image to match the original size
    resized_image = cropped_image.resize(original_size, method)
    return resized_image


def adjust_bbox_to_divisible_16(
    x_min: int,
    y_min: int,
    x_max: int,
    y_max: int,
    width: int,
    height: int,
    padding: int = MASK_CONTEXT_PADDING,
) -> tuple[int, int, int, int]:
    # Add context padding
    x_min = max(x_min - padding, 0)
    y_min = max(y_min - padding, 0)
    x_max = min(x_max + padding, width)
    y_max = min(y_max + padding, height)

    # Ensure bbox dimensions are divisible by 16
    def make_divisible_16(val_min, val_max, max_limit):
        size = val_max - val_min
        if size % 16 != 0:
            adjustment = 16 - (size % 16)
            val_min = max(val_min - adjustment // 2, 0)
            val_max = min(val_max + adjustment // 2, max_limit)
        return val_min, val_max

    x_min, x_max = make_divisible_16(x_min, x_max, width)
    y_min, y_max = make_divisible_16(y_min, y_max, height)

    # Re-check divisibility after bounds adjustment
    x_min = max(x_min, 0)
    y_min = max(y_min, 0)
    x_max = min(x_max, width)
    y_max = min(y_max, height)

    # Final divisibility check (in case constraints pushed it off again)
    x_min, x_max = make_divisible_16(x_min, x_max, width)
    y_min, y_max = make_divisible_16(y_min, y_max, height)

    return x_min, y_min, x_max, y_max


@spaces.GPU(duration=150)
def infer(
    furniture_image_input: Image.Image,
    room_image_input: EditorValue,
    furniture_prompt: str = "",
    seed: int = 42,
    randomize_seed: bool = False,
    guidance_scale: float = 3.5,
    num_inference_steps: int = 20,
    max_dimension: int = 720,
    num_images_per_prompt: int = 2,
    progress: gr.Progress = gr.Progress(track_tqdm=True),  # noqa: ARG001, B008
):
    # Ensure max_dimension is a multiple of 16 (for VAE)
    max_dimension = (max_dimension // 16) * 16

    room_image = room_image_input["background"]
    if room_image is None:
        msg = "Room image is required"
        raise ValueError(msg)
    room_image = cast("Image.Image", room_image)

    room_mask = room_image_input["layers"][0]
    if room_mask is None:
        msg = "Room mask is required"
        raise ValueError(msg)
    room_mask = cast("Image.Image", room_mask)

    mask_bbox_x_min, mask_bbox_y_min, mask_bbox_x_max, mask_bbox_y_max = (
        adjust_bbox_to_divisible_16(
            *room_mask.getbbox(alpha_only=False),
            width=room_mask.width,
            height=room_mask.height,
            padding=MASK_CONTEXT_PADDING,
        )
    )

    room_image_cropped = room_image.crop((
        mask_bbox_x_min,
        mask_bbox_y_min,
        mask_bbox_x_max,
        mask_bbox_y_max,
    ))
    room_image_padded, room_image_padded_size = pad(
        room_image_cropped,
        (max_dimension, max_dimension),
    )

    # grow_and_blur_mask
    grow_pixels = 10
    sigma_grow = grow_pixels / 4
    kernel_size_grow = math.ceil(sigma_grow * 1.5 + 1)
    room_mask_grow = room_mask.filter(
        ImageFilter.MaxFilter(size=2 * kernel_size_grow + 1)
    )

    blur_pixels = 33
    sigma_blur = blur_pixels / 4
    kernel_size_blur = math.ceil(sigma_blur * 1.5 + 1)
    room_mask_blurred = room_mask_grow.filter(
        ImageFilter.GaussianBlur(radius=kernel_size_blur)
    )

    room_mask_cropped = room_mask_blurred.crop((
        mask_bbox_x_min,
        mask_bbox_y_min,
        mask_bbox_x_max,
        mask_bbox_y_max,
    ))
    room_mask_padded, _ = pad(
        room_mask_cropped,
        (max_dimension, max_dimension),
    )

    room_image_padded.save("room_image_padded.png")
    room_mask_padded.save("room_mask_padded.png")

    furniture_image, _ = pad(
        furniture_image_input,
        (max_dimension, max_dimension),
    )

    furniture_mask = Image.new("RGB", (max_dimension, max_dimension), (255, 255, 255))

    image = Image.new(
        "RGB",
        (max_dimension * 2, max_dimension),
        (255, 255, 255),
    )
    # Paste on the center of the image
    image.paste(furniture_image, (0, 0))
    image.paste(room_image_padded, (max_dimension, 0))

    mask = Image.new(
        "RGB",
        (max_dimension * 2, max_dimension),
        (255, 255, 255),
    )
    mask.paste(furniture_mask, (0, 0))
    mask.paste(room_mask_padded, (max_dimension, 0), room_mask_padded)
    # Invert the mask
    mask = ImageOps.invert(mask)
    # Blur the mask
    mask = mask.filter(ImageFilter.GaussianBlur(radius=10))
    # Convert to 3 channel
    mask = mask.convert("L")

    if randomize_seed:
        seed = secrets.randbelow(MAX_SEED)

    prompt = (
        furniture_prompt + ".\n" + SYSTEM_PROMPT if furniture_prompt else SYSTEM_PROMPT
    )
    image.save("image.png")
    mask.save("mask.png")
    results_images = pipe(
        prompt=prompt,
        image=image,
        mask_image=mask,
        height=max_dimension,
        width=max_dimension * 2,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        num_images_per_prompt=num_images_per_prompt,
        generator=torch.Generator("cpu").manual_seed(seed),
    )["images"]

    final_images = []
    for image in results_images:
        final_image = room_image.copy()

        image_generated = unpad(
            image,
            room_image_padded_size,
            (
                mask_bbox_x_max - mask_bbox_x_min,
                mask_bbox_y_max - mask_bbox_y_min,
            ),
        )
        # Paste the image on the room image as the crop was done
        # on the room image
        final_image.paste(
            image_generated,
            (mask_bbox_x_min, mask_bbox_y_min),
            room_mask_cropped,
        )
        final_images.append(final_image)

    return final_images, seed


intro_markdown = r"""
<div>
  <div>
    <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 40px;">
      <b>AnyFurnish</b>
    </div>
    <br>
    <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
        <a href="https://github.com/julien-blanchon/"><img src="https://img.shields.io/static/v1?label=Github Report&message=Github&color=green"></a> &ensp;
    </div>
    <br>
    <div style="display: flex; text-align: center; font-size: 14px; padding-right: 300px; padding-left: 300px;">
        AnyFurnish is a tool that allows you to generate furniture images using Flux.1 Fill Dev.
        You can upload a furniture image and a room image, and the tool will generate a new image with the furniture in the room.
    </div>
  </div>
</div>
"""

css = r"""
#col-left {
    margin: 0 auto;
    max-width: 430px;
}
#col-mid {
    margin: 0 auto;
    max-width: 430px;
}
#col-right {
    margin: 0 auto;
    max-width: 430px;
}
#col-showcase {
    margin: 0 auto;
    max-width: 1100px;
}
"""


with gr.Blocks(css=css) as demo:
    gr.Markdown(intro_markdown)
    with gr.Row():
        with gr.Column(elem_id="col-left"):
            gr.HTML(
                """
            <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
                <div>
                Step 1. Upload a furniture image ⬇️
                </div>
            </div>
            """,
                max_height=50,
            )
            furniture_image_input = gr.Image(
                label="Furniture Image",
                type="pil",
                sources=["upload"],
                image_mode="RGB",
                height=500,
            )
            furniture_examples = gr.Examples(
                examples=[
                    EXAMPLES_DIR / "1" / "furniture_image.png",
                    EXAMPLES_DIR / "2" / "furniture_image.png",
                ],
                examples_per_page=12,
                inputs=[furniture_image_input],
            )
        with gr.Column(elem_id="col-mid"):
            gr.HTML(
                """
            <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
                <div>
                Step 2. Upload a room image ⬇️
                </div>
            </div>
            """,
                max_height=50,
            )
            room_image_input = gr.ImageEditor(
                label="Room Image - Draw mask for inpainting",
                type="pil",
                sources=["upload"],
                image_mode="RGBA",
                layers=False,
                brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"),
                height=500,
            )
            room_examples = gr.Examples(
                examples=[
                    make_example(
                        EXAMPLES_DIR / "1" / "room_image.png",
                        EXAMPLES_DIR / "1" / "room_mask.png",
                    ),
                    make_example(
                        EXAMPLES_DIR / "2" / "room_image.png",
                        EXAMPLES_DIR / "2" / "room_mask.png",
                    ),
                ],
                inputs=[room_image_input],
            )
        with gr.Column(elem_id="col-right"):
            gr.HTML(
                """
            <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
                <div>
                Step 3. Press Run to launch
                </div>
            </div>
            """,
                max_height=50,
            )
            results = gr.Gallery(
                label="Results",
                show_label=False,
                columns=2,
                height=500,
            )
            run_button = gr.Button("Run")

            # Reset the results when the run button is clicked
            run_button.click(
                outputs=results,
                fn=lambda: None,
            )
            with gr.Accordion("Advanced Settings", open=False):
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

                furniture_prompt = gr.Text(
                    label="Prompt",
                    max_lines=1,
                    placeholder="Enter a custom furniture description (optional)",
                    container=False,
                )
                with gr.Column():
                    max_dimension = gr.Slider(
                        label="Max Dimension",
                        minimum=512,
                        maximum=1024,
                        step=128,
                        value=720,
                    )

                    num_images_per_prompt = gr.Slider(
                        label="Number of images per prompt",
                        minimum=1,
                        maximum=4,
                        step=1,
                        value=2,
                    )

                    guidance_scale = gr.Slider(
                        label="Guidance Scale",
                        minimum=1,
                        maximum=30,
                        step=0.5,
                        # value=50,  # noqa: ERA001
                        value=30,
                    )

                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=1,
                        maximum=50,
                        step=1,
                        value=20,
                    )

    with gr.Column(elem_id="col-showcase"):
        gr.HTML("""
        <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
            <div> </div>
            <br>
            <div>
            AnyFurnish examples in pairs of furniture and room images
            </div>
        </div>
        """)
        show_case = gr.Examples(
            examples=[
                [
                    EXAMPLES_DIR / "1" / "furniture_image.png",
                    make_example(
                        EXAMPLES_DIR / "1" / "room_image.png",
                        EXAMPLES_DIR / "1" / "room_mask.png",
                    ),
                ],
                [
                    EXAMPLES_DIR / "2" / "furniture_image.png",
                    make_example(
                        EXAMPLES_DIR / "2" / "room_image.png",
                        EXAMPLES_DIR / "2" / "room_mask.png",
                    ),
                ],
            ],
            inputs=[furniture_image_input, room_image_input],
            label=None,
        )

    gr.on(
        triggers=[run_button.click],
        fn=infer,
        inputs=[
            furniture_image_input,
            room_image_input,
            furniture_prompt,
            seed,
            randomize_seed,
            guidance_scale,
            num_inference_steps,
            max_dimension,
            num_images_per_prompt,
        ],
        outputs=[results, seed],
    )

demo.launch()