Spaces:
Running
on
Zero
Running
on
Zero
Add hiresfix
Browse files
app.py
CHANGED
@@ -20,6 +20,8 @@ SYSTEM_PROMPT = r"""This two-panel split-frame image showcases a furniture in as
|
|
20 |
[LEFT] standalone product shot image the furniture on a white background.
|
21 |
[RIGHT] integrated example within a room scene."""
|
22 |
|
|
|
|
|
23 |
if not torch.cuda.is_available():
|
24 |
|
25 |
def _dummy_pipe(image: Image.Image, *args, **kwargs): # noqa: ARG001
|
@@ -78,68 +80,135 @@ def make_example(image_path: Path, mask_path: Path) -> EditorValue:
|
|
78 |
}
|
79 |
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
@spaces.GPU(duration=150)
|
82 |
def infer(
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
seed: int = 42,
|
87 |
randomize_seed: bool = False,
|
88 |
guidance_scale: float = 3.5,
|
89 |
num_inference_steps: int = 20,
|
90 |
max_dimension: int = 720,
|
|
|
91 |
progress: gr.Progress = gr.Progress(track_tqdm=True), # noqa: ARG001, B008
|
92 |
):
|
93 |
# Ensure max_dimension is a multiple of 16 (for VAE)
|
94 |
max_dimension = (max_dimension // 16) * 16
|
95 |
|
96 |
-
|
97 |
-
if
|
98 |
msg = "Room image is required"
|
99 |
raise ValueError(msg)
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
(max_dimension, max_dimension),
|
104 |
method=Image.Resampling.LANCZOS,
|
105 |
centering=(0.5, 0.5),
|
106 |
)
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
(max_dimension, max_dimension),
|
116 |
method=Image.Resampling.LANCZOS,
|
117 |
centering=(0.5, 0.5),
|
118 |
)
|
119 |
|
120 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
# _room_mask_with_white_background = Image.new(
|
122 |
# "RGB", _room_mask.size, (255, 255, 255)
|
123 |
# )
|
124 |
# _room_mask_with_white_background.paste(_room_mask, (0, 0), _room_mask)
|
125 |
-
|
126 |
|
127 |
-
furniture_image = ImageOps.
|
128 |
-
|
129 |
(max_dimension, max_dimension),
|
130 |
-
|
|
|
131 |
centering=(0.5, 0.5),
|
132 |
)
|
133 |
-
_furniture_image = Image.new(
|
134 |
-
"RGB",
|
135 |
-
(max_dimension, max_dimension),
|
136 |
-
(255, 255, 255),
|
137 |
-
)
|
138 |
-
_furniture_image.paste(furniture_image, (0, 0))
|
139 |
|
140 |
-
|
141 |
|
142 |
-
|
143 |
|
144 |
image = Image.new(
|
145 |
"RGB",
|
@@ -147,16 +216,16 @@ def infer(
|
|
147 |
(255, 255, 255),
|
148 |
)
|
149 |
# Paste on the center of the image
|
150 |
-
image.paste(
|
151 |
-
image.paste(
|
152 |
|
153 |
mask = Image.new(
|
154 |
"RGB",
|
155 |
(max_dimension * 2, max_dimension),
|
156 |
(255, 255, 255),
|
157 |
)
|
158 |
-
mask.paste(
|
159 |
-
mask.paste(
|
160 |
# Invert the mask
|
161 |
mask = ImageOps.invert(mask)
|
162 |
# Blur the mask
|
@@ -167,7 +236,11 @@ def infer(
|
|
167 |
if randomize_seed:
|
168 |
seed = secrets.randbelow(MAX_SEED)
|
169 |
|
170 |
-
prompt =
|
|
|
|
|
|
|
|
|
171 |
results_images = pipe(
|
172 |
prompt=prompt,
|
173 |
image=image,
|
@@ -176,16 +249,36 @@ def infer(
|
|
176 |
width=max_dimension * 2,
|
177 |
num_inference_steps=num_inference_steps,
|
178 |
guidance_scale=guidance_scale,
|
179 |
-
num_images_per_prompt=
|
180 |
generator=torch.Generator("cpu").manual_seed(seed),
|
181 |
)["images"]
|
182 |
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
]
|
187 |
|
188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
|
191 |
intro_markdown = r"""
|
@@ -241,7 +334,7 @@ with gr.Blocks(css=css) as demo:
|
|
241 |
""",
|
242 |
max_height=50,
|
243 |
)
|
244 |
-
|
245 |
label="Furniture Image",
|
246 |
type="pil",
|
247 |
sources=["upload"],
|
@@ -254,7 +347,7 @@ with gr.Blocks(css=css) as demo:
|
|
254 |
EXAMPLES_DIR / "2" / "furniture_image.png",
|
255 |
],
|
256 |
examples_per_page=12,
|
257 |
-
inputs=[
|
258 |
)
|
259 |
with gr.Column(elem_id="col-mid"):
|
260 |
gr.HTML(
|
@@ -267,7 +360,7 @@ with gr.Blocks(css=css) as demo:
|
|
267 |
""",
|
268 |
max_height=50,
|
269 |
)
|
270 |
-
|
271 |
label="Room Image - Draw mask for inpainting",
|
272 |
type="pil",
|
273 |
sources=["upload"],
|
@@ -288,7 +381,7 @@ with gr.Blocks(css=css) as demo:
|
|
288 |
EXAMPLES_DIR / "2" / "room_mask.png",
|
289 |
),
|
290 |
],
|
291 |
-
inputs=[
|
292 |
)
|
293 |
with gr.Column(elem_id="col-right"):
|
294 |
gr.HTML(
|
@@ -309,6 +402,12 @@ with gr.Blocks(css=css) as demo:
|
|
309 |
height=500,
|
310 |
)
|
311 |
run_button = gr.Button("Run")
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
with gr.Accordion("Advanced Settings", open=False):
|
313 |
seed = gr.Slider(
|
314 |
label="Seed",
|
@@ -334,6 +433,14 @@ with gr.Blocks(css=css) as demo:
|
|
334 |
value=720,
|
335 |
)
|
336 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
guidance_scale = gr.Slider(
|
338 |
label="Guidance Scale",
|
339 |
minimum=1,
|
@@ -378,21 +485,23 @@ with gr.Blocks(css=css) as demo:
|
|
378 |
),
|
379 |
],
|
380 |
],
|
381 |
-
inputs=[
|
382 |
label=None,
|
383 |
)
|
|
|
384 |
gr.on(
|
385 |
-
triggers=[run_button.click
|
386 |
fn=infer,
|
387 |
inputs=[
|
388 |
-
|
389 |
-
|
390 |
furniture_prompt,
|
391 |
seed,
|
392 |
randomize_seed,
|
393 |
guidance_scale,
|
394 |
num_inference_steps,
|
395 |
max_dimension,
|
|
|
396 |
],
|
397 |
outputs=[results, seed],
|
398 |
)
|
|
|
20 |
[LEFT] standalone product shot image the furniture on a white background.
|
21 |
[RIGHT] integrated example within a room scene."""
|
22 |
|
23 |
+
MASK_CONTEXT_PADDING = 16 * 8
|
24 |
+
|
25 |
if not torch.cuda.is_available():
|
26 |
|
27 |
def _dummy_pipe(image: Image.Image, *args, **kwargs): # noqa: ARG001
|
|
|
80 |
}
|
81 |
|
82 |
|
83 |
+
def remove_padding(image, original_size):
|
84 |
+
# Get current dimensions
|
85 |
+
padded_width, padded_height = image.size
|
86 |
+
original_width, original_height = original_size
|
87 |
+
|
88 |
+
# Calculate cropping box
|
89 |
+
left = (padded_width - original_width) // 2
|
90 |
+
top = (padded_height - original_height) // 2
|
91 |
+
right = left + original_width
|
92 |
+
bottom = top + original_height
|
93 |
+
|
94 |
+
# Crop to original size
|
95 |
+
return image.crop((left, top, right, bottom))
|
96 |
+
|
97 |
+
|
98 |
@spaces.GPU(duration=150)
|
99 |
def infer(
|
100 |
+
furniture_image_input: Image.Image,
|
101 |
+
room_image_input: EditorValue,
|
102 |
+
furniture_prompt: str = "",
|
103 |
seed: int = 42,
|
104 |
randomize_seed: bool = False,
|
105 |
guidance_scale: float = 3.5,
|
106 |
num_inference_steps: int = 20,
|
107 |
max_dimension: int = 720,
|
108 |
+
num_images_per_prompt: int = 2,
|
109 |
progress: gr.Progress = gr.Progress(track_tqdm=True), # noqa: ARG001, B008
|
110 |
):
|
111 |
# Ensure max_dimension is a multiple of 16 (for VAE)
|
112 |
max_dimension = (max_dimension // 16) * 16
|
113 |
|
114 |
+
room_image = room_image_input["background"]
|
115 |
+
if room_image is None:
|
116 |
msg = "Room image is required"
|
117 |
raise ValueError(msg)
|
118 |
+
room_image = cast("Image.Image", room_image)
|
119 |
+
|
120 |
+
room_mask = room_image_input["layers"][0]
|
121 |
+
if room_mask is None:
|
122 |
+
msg = "Room mask is required"
|
123 |
+
raise ValueError(msg)
|
124 |
+
room_mask = cast("Image.Image", room_mask)
|
125 |
+
|
126 |
+
mask_bbox_x_min, mask_bbox_y_min, mask_bbox_x_max, mask_bbox_y_max = (
|
127 |
+
room_mask.getbbox(alpha_only=False)
|
128 |
+
)
|
129 |
+
# Add MASK_CONTEXT_PADDING (16 pixels) for the context
|
130 |
+
mask_bbox_x_min -= MASK_CONTEXT_PADDING
|
131 |
+
mask_bbox_x_min = max(mask_bbox_x_min, 0)
|
132 |
+
mask_bbox_y_min -= MASK_CONTEXT_PADDING
|
133 |
+
mask_bbox_y_min = max(mask_bbox_y_min, 0)
|
134 |
+
mask_bbox_x_max += MASK_CONTEXT_PADDING
|
135 |
+
mask_bbox_x_max = min(mask_bbox_x_max, room_mask.width)
|
136 |
+
mask_bbox_y_max += MASK_CONTEXT_PADDING
|
137 |
+
mask_bbox_y_max = min(mask_bbox_y_max, room_mask.height)
|
138 |
+
|
139 |
+
bbox_longest_side = max(
|
140 |
+
mask_bbox_x_max - mask_bbox_x_min,
|
141 |
+
mask_bbox_y_max - mask_bbox_y_min,
|
142 |
+
)
|
143 |
+
|
144 |
+
room_image_cropped = room_image.crop((
|
145 |
+
mask_bbox_x_min,
|
146 |
+
mask_bbox_y_min,
|
147 |
+
mask_bbox_x_max,
|
148 |
+
mask_bbox_y_max,
|
149 |
+
))
|
150 |
+
room_image_cropped = ImageOps.pad(
|
151 |
+
room_image_cropped,
|
152 |
+
(bbox_longest_side, bbox_longest_side),
|
153 |
+
# White padding
|
154 |
+
color=(255, 255, 255),
|
155 |
+
centering=(0.5, 0.5),
|
156 |
+
)
|
157 |
+
room_image_cropped = ImageOps.fit(
|
158 |
+
room_image_cropped,
|
159 |
(max_dimension, max_dimension),
|
160 |
method=Image.Resampling.LANCZOS,
|
161 |
centering=(0.5, 0.5),
|
162 |
)
|
163 |
|
164 |
+
room_mask_cropped = room_mask.crop((
|
165 |
+
mask_bbox_x_min,
|
166 |
+
mask_bbox_y_min,
|
167 |
+
mask_bbox_x_max,
|
168 |
+
mask_bbox_y_max,
|
169 |
+
))
|
170 |
+
# room_mask_cropped.save("room_mask_croppedv1.png")
|
171 |
+
room_mask_cropped = ImageOps.pad(
|
172 |
+
room_mask_cropped,
|
173 |
+
(max_dimension, max_dimension),
|
174 |
+
# White padding
|
175 |
+
color=(255, 255, 255),
|
176 |
+
centering=(0.5, 0.5),
|
177 |
+
)
|
178 |
+
room_mask_cropped = ImageOps.fit(
|
179 |
+
room_mask_cropped,
|
180 |
(max_dimension, max_dimension),
|
181 |
method=Image.Resampling.LANCZOS,
|
182 |
centering=(0.5, 0.5),
|
183 |
)
|
184 |
|
185 |
+
# room_image_cropped.save("room_image_cropped.png")
|
186 |
+
# room_mask_cropped.save("room_mask_cropped.png")
|
187 |
+
|
188 |
+
# _room_image = ImageOps.fit(
|
189 |
+
# _room_image,
|
190 |
+
# (max_dimension, max_dimension),
|
191 |
+
# method=Image.Resampling.LANCZOS,
|
192 |
+
# centering=(0.5, 0.5),
|
193 |
+
# )
|
194 |
+
_room_image.save("room_image.png")
|
195 |
# _room_mask_with_white_background = Image.new(
|
196 |
# "RGB", _room_mask.size, (255, 255, 255)
|
197 |
# )
|
198 |
# _room_mask_with_white_background.paste(_room_mask, (0, 0), _room_mask)
|
199 |
+
_room_mask_with_white_background.save("room_mask.png")
|
200 |
|
201 |
+
furniture_image = ImageOps.pad(
|
202 |
+
furniture_image_input,
|
203 |
(max_dimension, max_dimension),
|
204 |
+
# White padding
|
205 |
+
color=(255, 255, 255),
|
206 |
centering=(0.5, 0.5),
|
207 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
+
_furniture_image.save("furniture_image.png")
|
210 |
|
211 |
+
furniture_mask = Image.new("RGB", (max_dimension, max_dimension), (255, 255, 255))
|
212 |
|
213 |
image = Image.new(
|
214 |
"RGB",
|
|
|
216 |
(255, 255, 255),
|
217 |
)
|
218 |
# Paste on the center of the image
|
219 |
+
image.paste(furniture_image, (0, 0))
|
220 |
+
image.paste(room_image_cropped, (max_dimension, 0))
|
221 |
|
222 |
mask = Image.new(
|
223 |
"RGB",
|
224 |
(max_dimension * 2, max_dimension),
|
225 |
(255, 255, 255),
|
226 |
)
|
227 |
+
mask.paste(furniture_mask, (0, 0))
|
228 |
+
mask.paste(room_mask_cropped, (max_dimension, 0), room_mask_cropped)
|
229 |
# Invert the mask
|
230 |
mask = ImageOps.invert(mask)
|
231 |
# Blur the mask
|
|
|
236 |
if randomize_seed:
|
237 |
seed = secrets.randbelow(MAX_SEED)
|
238 |
|
239 |
+
prompt = (
|
240 |
+
furniture_prompt + ".\n" + SYSTEM_PROMPT if furniture_prompt else SYSTEM_PROMPT
|
241 |
+
)
|
242 |
+
# image.save("image.png")
|
243 |
+
# mask.save("mask.png")
|
244 |
results_images = pipe(
|
245 |
prompt=prompt,
|
246 |
image=image,
|
|
|
249 |
width=max_dimension * 2,
|
250 |
num_inference_steps=num_inference_steps,
|
251 |
guidance_scale=guidance_scale,
|
252 |
+
num_images_per_prompt=num_images_per_prompt,
|
253 |
generator=torch.Generator("cpu").manual_seed(seed),
|
254 |
)["images"]
|
255 |
|
256 |
+
final_images = []
|
257 |
+
for image in results_images:
|
258 |
+
final_image = room_image.copy()
|
|
|
259 |
|
260 |
+
# Downscale back to the bbox_longest_side
|
261 |
+
image_generated = image.crop((
|
262 |
+
max_dimension,
|
263 |
+
0,
|
264 |
+
max_dimension * 2,
|
265 |
+
max_dimension,
|
266 |
+
))
|
267 |
+
image_generated = image_generated.resize((bbox_longest_side, bbox_longest_side))
|
268 |
+
# Crop back to the bbox (remove the padding)
|
269 |
+
image_generated = remove_padding(
|
270 |
+
image_generated,
|
271 |
+
(
|
272 |
+
mask_bbox_x_max - mask_bbox_x_min,
|
273 |
+
mask_bbox_y_max - mask_bbox_y_min,
|
274 |
+
),
|
275 |
+
)
|
276 |
+
# Paste the image on the room image as the crop was done
|
277 |
+
# on the room image
|
278 |
+
final_image.paste(image_generated, (mask_bbox_x_min, mask_bbox_y_min))
|
279 |
+
final_images.append(final_image)
|
280 |
+
|
281 |
+
return final_images, seed
|
282 |
|
283 |
|
284 |
intro_markdown = r"""
|
|
|
334 |
""",
|
335 |
max_height=50,
|
336 |
)
|
337 |
+
furniture_image_input = gr.Image(
|
338 |
label="Furniture Image",
|
339 |
type="pil",
|
340 |
sources=["upload"],
|
|
|
347 |
EXAMPLES_DIR / "2" / "furniture_image.png",
|
348 |
],
|
349 |
examples_per_page=12,
|
350 |
+
inputs=[furniture_image_input],
|
351 |
)
|
352 |
with gr.Column(elem_id="col-mid"):
|
353 |
gr.HTML(
|
|
|
360 |
""",
|
361 |
max_height=50,
|
362 |
)
|
363 |
+
room_image_input = gr.ImageEditor(
|
364 |
label="Room Image - Draw mask for inpainting",
|
365 |
type="pil",
|
366 |
sources=["upload"],
|
|
|
381 |
EXAMPLES_DIR / "2" / "room_mask.png",
|
382 |
),
|
383 |
],
|
384 |
+
inputs=[room_image_input],
|
385 |
)
|
386 |
with gr.Column(elem_id="col-right"):
|
387 |
gr.HTML(
|
|
|
402 |
height=500,
|
403 |
)
|
404 |
run_button = gr.Button("Run")
|
405 |
+
|
406 |
+
# Reset the results when the run button is clicked
|
407 |
+
run_button.click(
|
408 |
+
outputs=results,
|
409 |
+
fn=lambda: None,
|
410 |
+
)
|
411 |
with gr.Accordion("Advanced Settings", open=False):
|
412 |
seed = gr.Slider(
|
413 |
label="Seed",
|
|
|
433 |
value=720,
|
434 |
)
|
435 |
|
436 |
+
num_images_per_prompt = gr.Slider(
|
437 |
+
label="Number of images per prompt",
|
438 |
+
minimum=1,
|
439 |
+
maximum=4,
|
440 |
+
step=1,
|
441 |
+
value=2,
|
442 |
+
)
|
443 |
+
|
444 |
guidance_scale = gr.Slider(
|
445 |
label="Guidance Scale",
|
446 |
minimum=1,
|
|
|
485 |
),
|
486 |
],
|
487 |
],
|
488 |
+
inputs=[furniture_image_input, room_image_input],
|
489 |
label=None,
|
490 |
)
|
491 |
+
|
492 |
gr.on(
|
493 |
+
triggers=[run_button.click],
|
494 |
fn=infer,
|
495 |
inputs=[
|
496 |
+
furniture_image_input,
|
497 |
+
room_image_input,
|
498 |
furniture_prompt,
|
499 |
seed,
|
500 |
randomize_seed,
|
501 |
guidance_scale,
|
502 |
num_inference_steps,
|
503 |
max_dimension,
|
504 |
+
num_images_per_prompt,
|
505 |
],
|
506 |
outputs=[results, seed],
|
507 |
)
|