Spaces:
Sleeping
Sleeping
File size: 21,154 Bytes
0852163 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 |
import marimo
__generated_with = "0.9.15"
app = marimo.App(width="full")
@app.cell(hide_code=True)
def __(mo):
mo.md(
"""
# Political Ideologies Analysis
This project provides a detailed analysis of political ideologies using data from the Huggingface Political Ideologies dataset. The code leverages various data science libraries and visualization tools to map, analyze, and visualize political ideology text data.
Project Structure
This analysis is based on huggingface dataset repository. <br>
You can visit right [here](https://huggingface.co./datasets/JyotiNayak/political_ideologies)
"""
)
return
@app.cell(hide_code=True)
def __(form, mo, try_predict):
text_classified = 'Please write something'
if (form.value):
text_classified = try_predict(form.value)
mo.vstack([form, mo.md(f"Your Opinion Classified as: **{text_classified}**")])
return (text_classified,)
@app.cell(hide_code=True)
def __():
import marimo as mo
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import altair as alt
from gensim.models import Word2Vec
from sklearn.manifold import TSNE
from umap import UMAP
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Embedding, Bidirectional, LSTM, Dense
import re
import string
from gensim.models import FastText
from wordcloud import WordCloud
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer
from nltk.stem.porter import PorterStemmer
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping
from sklearn.model_selection import train_test_split
import nltk
mo.md("""
## 1. Import all libraries needed
The initial cells import the necessary libraries for data handling, visualization, and word embedding.
""")
return (
Bidirectional,
Dense,
EarlyStopping,
Embedding,
FastText,
LSTM,
PorterStemmer,
ReduceLROnPlateau,
Sequential,
TSNE,
Tokenizer,
UMAP,
Word2Vec,
WordCloud,
WordNetLemmatizer,
alt,
mo,
nltk,
np,
pad_sequences,
pd,
plt,
re,
sns,
stopwords,
string,
tf,
train_test_split,
word_tokenize,
)
@app.cell(hide_code=True)
def __(nltk):
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('wordnet')
return
@app.cell(hide_code=True)
def __(mo):
mo.md(
"""
Here are the mapped of label and issue type columns.
```yaml
Label Mapping: {'conservative': 0, 'liberal': 1 }
Issue Type Mapping: {
'economic': 0, 'environmental': 1,
'family/gender': 2, 'geo-political and foreign policy': 3,
'political': 4, 'racial justice and immigration': 5,
'religious': 6, 'social, health and education': 7
}
```
"""
)
return
@app.cell(hide_code=True)
def __(mo, pd):
df = pd.read_parquet('train.parquet')
df_val = pd.read_parquet('val.parquet')
df_test = pd.read_parquet('test.parquet')
df = df.drop('__index_level_0__', axis=1)
mo.md("""
## 2. Dataset Loading
The dataset files (`train.parquet`, `val.parquet`, and `test.parquet`) are loaded, concatenated, and cleaned to form a single DataFrame (df). Columns are mapped to readable labels for ease of understanding.
""")
return df, df_test, df_val
@app.cell(hide_code=True)
def __():
label_mapping = {
'conservative': 0,
'liberal': 1
}
issue_type_mapping = {
'economic': 0,
'environmental': 1,
'family/gender': 2,
'geo-political and foreign policy': 3,
'political': 4,
'racial justice and immigration': 5,
'religious': 6,
'social, health and education': 7
}
return issue_type_mapping, label_mapping
@app.cell
def __(issue_type_mapping, label_mapping):
label_mapping_reversed = {v: k for k, v in label_mapping.items()}
issue_type_mapping_reversed = {v: k for k, v in issue_type_mapping.items()}
print(label_mapping_reversed)
print(issue_type_mapping_reversed)
return issue_type_mapping_reversed, label_mapping_reversed
@app.cell(hide_code=True)
def __(df, issue_type_mapping_reversed, label_mapping_reversed, mo):
df['label_text'] = df['label'].replace(label_mapping_reversed)
df['issue_type_text'] = df['issue_type'].replace(issue_type_mapping_reversed)
labels_grouped = df['label_text'].value_counts().rename_axis('label_text').reset_index(name='counts')
issue_types_grouped = (
df["issue_type_text"]
.value_counts()
.rename_axis("issue_type_text")
.reset_index(name="counts")
)
mo.md("""
## 3. Mapping Labels and Issue Types
Two dictionaries map labels (conservative and liberal) and issue types (e.g., economic, environmental, etc.) to numerical values for machine learning purposes. Reversed mappings are created to convert numerical labels back into their text form.
""")
return issue_types_grouped, labels_grouped
@app.cell
def __(df):
df.iloc[:, :6].head(7)
return
@app.cell(hide_code=True)
def __(mo):
mo.md(
"""
## 4. Visualizing Data Distributions
Bar plots visualize the proportions of conservative vs. liberal ideologies and the count of different issue types. These provide an overview of the dataset composition.
"""
)
return
@app.cell(hide_code=True)
def __(alt, labels_grouped, mo):
mo.ui.altair_chart(
alt.Chart(labels_grouped).mark_bar(
fill='#4C78A8',
cursor='pointer',
).encode(
x=alt.X('label_text', axis=alt.Axis(labelAngle=0)),
y='counts:Q'
)
)
return
@app.cell(hide_code=True)
def __(alt, issue_types_grouped, mo):
mo.ui.altair_chart(
alt.Chart(issue_types_grouped)
.mark_bar(
fill="#4C78A8",
cursor="pointer",
)
.encode(
x=alt.X(
"issue_type_text:O",
axis=alt.Axis(
labelAngle=-10, labelAlign="center", labelPadding=10
),
),
y="counts:Q",
)
)
return
@app.cell(hide_code=True)
def __(mo):
mo.md(
r"""
## 5. Text Preprocessing
Texts preprocessed to remove any ineffective words.
"""
)
return
@app.cell(hide_code=True)
def __(WordCloud, df):
all_text = ''.join(df['statement'])
wordcloud = WordCloud(width=800, height=400, background_color='white').generate(all_text)
return all_text, wordcloud
@app.cell(hide_code=True)
def __(plt, wordcloud):
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis='off'
plt.plot()
plt.gca()
return
@app.cell(hide_code=True)
def __(WordNetLemmatizer, stopwords):
lemmatizer = WordNetLemmatizer()
stop_words = set(stopwords.words('english'))
return lemmatizer, stop_words
@app.cell(hide_code=True)
def __(lemmatizer, re, stop_words, word_tokenize):
# Function for preprocessing text
def preprocess_text(text):
# 1. Lowercase the text
text = text.lower()
# 2. Remove punctuation and non-alphabetical characters
text = re.sub(r'[^a-z\s]', '', text)
# 3. Tokenize the text
tokens = word_tokenize(text)
# 4. Remove stopwords and lemmatize each token
processed_tokens = [lemmatizer.lemmatize(token) for token in tokens if token not in stop_words]
return processed_tokens
return (preprocess_text,)
@app.cell(hide_code=True)
def __(df, df_test, df_val, preprocess_text):
# Terapkan fungsi preprocessing pada kolom 'statement'
df['processed_statement'] = df['statement'].apply(preprocess_text)
df_val['processed_statement'] = df_val['statement'].apply(preprocess_text)
df_test['processed_statement'] = df_test['statement'].apply(preprocess_text)
processed_statement = df['processed_statement']
return (processed_statement,)
@app.cell(hide_code=True)
def __(mo):
mo.md(r"""## 6. Word Embeddings""")
return
@app.cell(hide_code=True)
def __(np):
def get_doc_embedding(tokens, embeddings_model):
vectors = [embeddings_model.wv[word] for word in tokens if word in embeddings_model.wv]
if vectors:
return np.mean(vectors, axis=0)
else:
return np.zeros(embeddings_model.vector_size)
return (get_doc_embedding,)
@app.cell(hide_code=True)
def __(FastText, Word2Vec, processed_statement):
embedding_models = {
'fasttext': FastText(sentences=processed_statement, vector_size=100, window=3, min_count=1, seed=0),
'word2vec': Word2Vec(sentences=processed_statement, vector_size=100, window=3, min_count=1, seed=0)
}
return (embedding_models,)
@app.cell(hide_code=True)
def __(mo):
mo.md(r"""### 6.1 Word Embedding using FastText and Word2Vec""")
return
@app.cell(hide_code=True)
def __(mo):
mo.md(
"""
#### Dimensionality Reduction using UMAP
Embeddings are projected into a 2D space using UMAP for visualization. The embeddings are colored by issue type, showing clusters of similar statements.
Interactive scatter plots in Altair show ideology and issue types in 2D space. A brush selection tool allows users to explore specific points and view tooltip information.
#### Combined Scatter Plot
Combines the two scatter plots into a side-by-side visualization for direct comparison of ideologies vs. issue types.
Running the Code
Run the code using the marimo.App instance. This notebook can also be run as a standalone Python script:
"""
)
return
@app.cell(hide_code=True)
def __(UMAP, alt, df, mo, np):
def word_embedding_2d(embedding_model, embedding_model_name):
embeddings_matrix = np.vstack(df[f'embeddings_{embedding_model_name}'].values)
umap = UMAP(n_components=2, random_state=42)
umap_results = umap.fit_transform(embeddings_matrix)
df[f'{embedding_model_name}_x'] = umap_results[:, 0]
df[f'{embedding_model_name}_y'] = umap_results[:, 1]
brush = alt.selection_interval()
size = 350
points1 = alt.Chart(df, height=size, width=size).mark_point().encode(
x=f'{embedding_model_name}_x:Q',
y=f'{embedding_model_name}_y:Q',
color=alt.condition(brush, 'label_text', alt.value('grey')),
tooltip=[f'{embedding_model_name}_x:Q', f'{embedding_model_name}_y:Q', 'statement:N', 'label_text:N']
).add_params(brush).properties(title='By Political Ideologies')
scatter_chart1 = mo.ui.altair_chart(points1)
points2 = alt.Chart(df, height=size, width=size).mark_point().encode(
x=f'{embedding_model_name}_x:Q',
y=f'{embedding_model_name}_y:Q',
color=alt.condition(brush, 'issue_type_text', alt.value('grey')),
tooltip=[f'{embedding_model_name}_x:Q', f'{embedding_model_name}_y:Q', 'statement:N', 'issue_type:N']
).add_params(brush).properties(title='By Issue Types')
scatter_chart2 = mo.ui.altair_chart(points2)
combined_chart = (scatter_chart1 | scatter_chart2)
return combined_chart
return (word_embedding_2d,)
@app.cell(hide_code=True)
def __(
df,
df_test,
df_val,
embedding_models,
get_doc_embedding,
word_embedding_2d,
):
for name, embedding_model in embedding_models.items():
df['embeddings_' + name] = df['processed_statement'].apply(lambda x: get_doc_embedding(x, embedding_model))
df_val['embeddings_' + name] = df_val['processed_statement'].apply(lambda x: get_doc_embedding(x, embedding_model))
df_test['embeddings_' + name] = df_test['processed_statement'].apply(lambda x: get_doc_embedding(x, embedding_model))
fasttext_plot = word_embedding_2d(embedding_models['fasttext'], 'fasttext')
word2vec_plot = word_embedding_2d(embedding_models['word2vec'], 'word2vec')
test_embeddings_fasttext = df_test['embeddings_fasttext']
return (
embedding_model,
fasttext_plot,
name,
test_embeddings_fasttext,
word2vec_plot,
)
@app.cell(hide_code=True)
def __(fasttext_plot, mo):
fasttext_table = fasttext_plot.value[['statement', 'label_text', 'issue_type_text']]
fasttext_chart = mo.vstack([
fasttext_plot,
fasttext_table
])
return fasttext_chart, fasttext_table
@app.cell(hide_code=True)
def __(fasttext_plot, mo, word2vec_plot):
word2vec_table = fasttext_plot.value[['statement', 'label_text', 'issue_type_text']]
word2vec_chart = mo.vstack([
word2vec_plot,
word2vec_table
])
return word2vec_chart, word2vec_table
@app.cell(hide_code=True)
def __(fasttext_chart, mo, word2vec_chart):
mo.ui.tabs({
'FastText': fasttext_chart,
'Word2Vec': word2vec_chart
})
return
@app.cell(hide_code=True)
def __(mo):
mo.md(
r"""
## Data Insights
- Ideology Distribution: Visualizes proportions of conservative and liberal ideologies.
- Issue Types: Bar plot reveals the diversity and frequency of issue types in the dataset.
- Word Embeddings: Using UMAP for 2D projections helps identify clusters in political statements.
- Interactive Exploration: Offers detailed, interactive views on ideology vs. issue type distribution.
This code provides a thorough analysis pipeline, from data loading to interactive visualizations, enabling an in-depth exploration of political ideologies.
"""
)
return
@app.cell(hide_code=True)
def __(mo):
mo.md(
r"""
## Building Model
```python
clf_model = Sequential()
clf_model.add(Bidirectional(tf.keras.layers.GRU(64,
activation='relu',
# return_sequences=True,
input_shape=(sent_length, input_dim),
kernel_regularizer=tf.keras.regularizers.l2(0.001)))) # L2 regularization
clf_model.add(tf.keras.layers.Dropout(0.5))
clf_model.add(Dense(2,
activation='softmax',
kernel_regularizer=tf.keras.regularizers.l2(0.001))) # L2 regularization in the Dense layer
```
"""
)
return
@app.cell(hide_code=True)
def __(df_test, np, test_embeddings_fasttext):
# X_train = np.array(df['embeddings_fasttext'].tolist())
# X_train = X_train.reshape((X_train.shape[0], 1, X_train.shape[1]))
# y_train = df['label'].values
# X_val = np.array(df_val['embeddings_fasttext'].tolist())
# X_val = X_val.reshape((X_val.shape[0], 1, X_val.shape[1]))
# y_val = df_val['label'].values
X_test = np.array(test_embeddings_fasttext.tolist())
X_test = X_test.reshape((X_test.shape[0], 1, X_test.shape[1]))
y_test = df_test['label'].values
return X_test, y_test
@app.cell(hide_code=True)
def __():
# all_tokens = [token for tokens in df['processed_statement'] for token in tokens]
# vocab_size = len(set(all_tokens))
# vocab_size
# input_dim = X_train.shape[1] # Dimensi dari embedding yang digunakan (misalnya 50 atau 100)
# sent_length = X_train.shape[1] # Ukuran dimensi per embedding
# input_dim, sent_length
return
@app.cell(hide_code=True)
def __():
# clf_model = Sequential()
# clf_model.add(Bidirectional(tf.keras.layers.GRU(64,
# activation='relu',
# # return_sequences=True,
# input_shape=(sent_length, input_dim),
# kernel_regularizer=tf.keras.regularizers.l2(0.001)))) # L2 regularization
# clf_model.add(tf.keras.layers.Dropout(0.5))
# clf_model.add(Dense(2,
# activation='softmax',
# kernel_regularizer=tf.keras.regularizers.l2(0.001))) # L2 regularization in the Dense layer
# clf_model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# clf_model.summary()
return
@app.cell(hide_code=True)
def __():
# lr_scheduler = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=10, min_lr=1e-10)
# model_history = clf_model.fit(X_train, y_train, validation_data=(X_val, y_val), epochs=100, batch_size=16, verbose=2, callbacks=[lr_scheduler])
return
@app.cell(hide_code=True)
def __():
# clf_model.save('models/model_8781.keras')
# joblib.dump(model_history, 'history/history_model_8781.pkl')
return
@app.cell(hide_code=True)
def __(joblib, tf):
loaded_model = tf.keras.models.load_model('models/model_8781.keras')
model_history_loaded = joblib.load('history/history_model_8781.pkl')
# loaded_model = clf_model
# model_history_loaded = model_history
return loaded_model, model_history_loaded
@app.cell(hide_code=True)
def __(model_history_loaded, pd):
history_data = {
'epoch': range(1, len(model_history_loaded.history['accuracy']) + 1),
'accuracy': model_history_loaded.history['accuracy'],
'val_accuracy': model_history_loaded.history['val_accuracy'],
'loss': model_history_loaded.history['loss'],
'val_loss': model_history_loaded.history['val_loss']
}
history_df = pd.DataFrame(history_data)
return history_data, history_df
@app.cell(hide_code=True)
def __(alt, history_df, mo):
accuracy_chart = alt.Chart(history_df).transform_fold(
['accuracy', 'val_accuracy'],
as_=['type', 'accuracy']
).mark_line().encode(
x='epoch:Q',
y='accuracy:Q',
color='type:N',
tooltip=['epoch', 'accuracy']
).properties(title='Training and Validation Accuracy')
loss_chart = alt.Chart(history_df).transform_fold(
['loss', 'val_loss'],
as_=['type', 'loss']
).mark_line().encode(
x='epoch:Q',
y='loss:Q',
color='type:N',
tooltip=['epoch', 'loss']
).properties(title='Training and Validation Loss')
mo.hstack([accuracy_chart | loss_chart])
return accuracy_chart, loss_chart
@app.cell(hide_code=True)
def __(X_test, loaded_model, np):
y_pred = loaded_model.predict(X_test)
y_pred = np.argmax(y_pred, axis=1)
return (y_pred,)
@app.cell(hide_code=True)
def __():
from sklearn.metrics import accuracy_score, classification_report
import joblib
return accuracy_score, classification_report, joblib
@app.cell(hide_code=True)
def __(accuracy_score, mo, y_pred, y_test):
mo.md(f"Accuracy score: **{round(accuracy_score(y_test, y_pred) * 100, 2)}**%")
return
@app.cell(hide_code=True)
def __(classification_report, mo, y_pred, y_test):
with mo.redirect_stdout():
print(classification_report(y_test, y_pred))
return
@app.cell(hide_code=True)
def __(embedding_models, get_doc_embedding, loaded_model, preprocess_text):
def try_predict(text):
tokenized = preprocess_text(text)
embedded = get_doc_embedding(tokenized, embedding_models['fasttext'])
embedded = embedded.reshape(1, 1, -1)
prediction = loaded_model.predict(embedded)
predicted_class = prediction.argmax(axis=-1)
predicted_class = "Progressive" if predicted_class == 1 else "Conservative"
return predicted_class
return (try_predict,)
@app.cell(hide_code=True)
def __():
def validate(value):
if len(value.split()) < 15:
return 'Please enter more than 15 words.'
return (validate,)
@app.cell(hide_code=True)
def __(mo, validate):
form = mo.ui.text_area(placeholder="...").form(validate=validate)
return (form,)
if __name__ == "__main__":
app.run()
|