bayndrysf's picture
Update app.py
85c2999 verified
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
from PIL import Image
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = 'stabilityai/stable-diffusion-2'
prj_path = "bayndrysf/dreambooth-project-style"
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = DiffusionPipeline.from_pretrained(base_model)
pipe.enable_xformers_memory_efficient_attention()
pipe.to(device);
pipe.load_lora_weights(prj_path, weight_name="pytorch_lora_weights.safetensors")
else:
pipe = DiffusionPipeline.from_pretrained(base_model)
pipe.to(device);
pipe.load_lora_weights(prj_path, weight_name="pytorch_lora_weights.safetensors")
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def image_grid(imgs, rows, cols, resize=256):
assert len(imgs) == rows * cols
if resize is not None:
imgs = [img.resize((resize, resize)) for img in imgs]
w, h = imgs[0].size
grid_w, grid_h = cols * w, rows * h
grid = Image.new("RGB", size=(grid_w, grid_h))
for i, img in enumerate(imgs):
x = i % cols * w
y = i // cols * h
grid.paste(img, box=(x, y))
return grid
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def generate_image(prompt):
image = pipe(prompt=prompt, num_inference_steps=20, num_images_per_prompt = 1)
return image_grid(image.images, 1, 1, 1024)
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
image = generate_image(prompt)
return image
examples = [
"A whirling dervish performing in a historic Istanbul courtyard, captured in the iconic style of Ara Güler.",
"An elderly man sipping tea at a street café in Istanbul, captured in the iconic style of Ara Güler.",
"A group of friends enjoying a ferry ride on the Bosphorus, captured in the iconic style of Ara Güler.",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Ara Güler's Istanbul: Image Generation with Stable Diffusion
Currently running on {power_device}.
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=0.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=12,
step=1,
value=2,
)
gr.Examples(
examples = examples,
inputs = [prompt]
)
run_button.click(
fn = infer,
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result]
)
demo.queue().launch()