Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import random | |
from diffusers import DiffusionPipeline | |
import torch | |
from PIL import Image | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
base_model = 'stabilityai/stable-diffusion-2' | |
prj_path = "bayndrysf/dreambooth-project-style" | |
if torch.cuda.is_available(): | |
torch.cuda.max_memory_allocated(device=device) | |
pipe = DiffusionPipeline.from_pretrained(base_model) | |
pipe.enable_xformers_memory_efficient_attention() | |
pipe.to(device); | |
pipe.load_lora_weights(prj_path, weight_name="pytorch_lora_weights.safetensors") | |
else: | |
pipe = DiffusionPipeline.from_pretrained(base_model) | |
pipe.to(device); | |
pipe.load_lora_weights(prj_path, weight_name="pytorch_lora_weights.safetensors") | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def image_grid(imgs, rows, cols, resize=256): | |
assert len(imgs) == rows * cols | |
if resize is not None: | |
imgs = [img.resize((resize, resize)) for img in imgs] | |
w, h = imgs[0].size | |
grid_w, grid_h = cols * w, rows * h | |
grid = Image.new("RGB", size=(grid_w, grid_h)) | |
for i, img in enumerate(imgs): | |
x = i % cols * w | |
y = i // cols * h | |
grid.paste(img, box=(x, y)) | |
return grid | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def generate_image(prompt): | |
image = pipe(prompt=prompt, num_inference_steps=20, num_images_per_prompt = 1) | |
return image_grid(image.images, 1, 1, 1024) | |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): | |
image = generate_image(prompt) | |
return image | |
examples = [ | |
"A whirling dervish performing in a historic Istanbul courtyard, captured in the iconic style of Ara Güler.", | |
"An elderly man sipping tea at a street café in Istanbul, captured in the iconic style of Ara Güler.", | |
"A group of friends enjoying a ferry ride on the Bosphorus, captured in the iconic style of Ara Güler.", | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
if torch.cuda.is_available(): | |
power_device = "GPU" | |
else: | |
power_device = "CPU" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f""" | |
# Ara Güler's Istanbul: Image Generation with Stable Diffusion | |
Currently running on {power_device}. | |
""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=False, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=0.0, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=12, | |
step=1, | |
value=2, | |
) | |
gr.Examples( | |
examples = examples, | |
inputs = [prompt] | |
) | |
run_button.click( | |
fn = infer, | |
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs = [result] | |
) | |
demo.queue().launch() |