import gradio as gr import numpy as np import random from diffusers import DiffusionPipeline import torch from PIL import Image device = "cuda" if torch.cuda.is_available() else "cpu" base_model = 'stabilityai/stable-diffusion-2' prj_path = "bayndrysf/dreambooth-project-style" if torch.cuda.is_available(): torch.cuda.max_memory_allocated(device=device) pipe = DiffusionPipeline.from_pretrained(base_model) pipe.enable_xformers_memory_efficient_attention() pipe.to(device); pipe.load_lora_weights(prj_path, weight_name="pytorch_lora_weights.safetensors") else: pipe = DiffusionPipeline.from_pretrained(base_model) pipe.to(device); pipe.load_lora_weights(prj_path, weight_name="pytorch_lora_weights.safetensors") MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 def image_grid(imgs, rows, cols, resize=256): assert len(imgs) == rows * cols if resize is not None: imgs = [img.resize((resize, resize)) for img in imgs] w, h = imgs[0].size grid_w, grid_h = cols * w, rows * h grid = Image.new("RGB", size=(grid_w, grid_h)) for i, img in enumerate(imgs): x = i % cols * w y = i // cols * h grid.paste(img, box=(x, y)) return grid MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 def generate_image(prompt): image = pipe(prompt=prompt, num_inference_steps=20, num_images_per_prompt = 1) return image_grid(image.images, 1, 1, 1024) def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): image = generate_image(prompt) return image examples = [ "A whirling dervish performing in a historic Istanbul courtyard, captured in the iconic style of Ara Güler.", "An elderly man sipping tea at a street café in Istanbul, captured in the iconic style of Ara Güler.", "A group of friends enjoying a ferry ride on the Bosphorus, captured in the iconic style of Ara Güler.", ] css=""" #col-container { margin: 0 auto; max-width: 520px; } """ if torch.cuda.is_available(): power_device = "GPU" else: power_device = "CPU" with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # Ara Güler's Istanbul: Image Generation with Stable Diffusion Currently running on {power_device}. """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=0.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=12, step=1, value=2, ) gr.Examples( examples = examples, inputs = [prompt] ) run_button.click( fn = infer, inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs = [result] ) demo.queue().launch()