Spaces:
Runtime error
Runtime error
File size: 4,077 Bytes
17d3814 fa55388 17d3814 ad35440 17d3814 c70e8e5 ad35440 17d3814 ad35440 17d3814 ad35440 88bc904 17d3814 ad35440 17d3814 ad35440 17d3814 ad35440 17d3814 ad35440 17d3814 ad35440 17d3814 ad35440 17d3814 ad35440 17d3814 ad35440 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
import spaces
import gradio as gr
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
title = """# Welcome to 🌟Tonic's✨StarCoder
✨StarCoder StarCoder2-15B model is a 15B parameter model trained on 600+ programming languages from The Stack v2, with opt-out requests excluded. The model uses Grouped Query Attention, a context window of 16,384 tokens with a sliding window attention of 4,096 tokens, and was trained using the Fill-in-the-Middle objective on 4+ trillion tokens. The model was trained with NVIDIA NeMo™ Framework using the NVIDIA Eos Supercomputer built with NVIDIA DGX H100 systems. You can build with this endpoint using✨StarCoder available here : [bigcode/starcoder2-15b](https://huggingface.co./bigcode/starcoder2-15b). You can also use ✨StarCoder by cloning this space. Simply click here: <a style="display:inline-block" href="https://huggingface.co./spaces/Tonic/starcoder2?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface:[MultiTransformer](https://huggingface.co./MultiTransformer) Math 🔍 [introspector](https://huggingface.co./introspector) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [SciTonic](https://github.com/Tonic-AI/scitonic)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""
default_system_prompt = """SYSTEM: You are an AI that code. Answer with code."""
model_path = "bigcode/starcoder2-15b"
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
device_map="auto",
# trust_remote_code=True,
token=hf_token,
)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
# import gradio as gr
# from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
# checkpoint = "bigcode/starcoder2-15b"
# quantization_config = BitsAndBytesConfig(load_in_8bit=True)
# tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# model = AutoModelForCausalLM.from_pretrained(checkpoint, quantization_config=quantization_config).to("cuda")
def generate_text(prompt, temperature, max_length):
inputs = tokenizer.encode(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(inputs, max_length=max_length, top_p=0.9, temperature=temperature)
return tokenizer.decode(outputs[0])
def gradio_app():
with gr.Blocks() as demo:
gr.Markdown(title)
output = gr.Code(label="Generated Code", lines=40)
with gr.Row():
generate_btn = gr.Button("Generate")
with gr.Row():
temperature = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.5, label="Temperature")
max_length = gr.Slider(minimum=100, maximum=1024, step=10, value=100, label="Generate Length")
with gr.Row():
prompt = gr.Textbox(label="Enter your code prompt", placeholder="def print_hello_world():")
generate_btn.click(
fn=generate_text,
inputs=[prompt, temperature, max_length],
outputs=output
)
demo.launch() |