tonic commited on
Commit
ad35440
1 Parent(s): 5d090de

changing to starcoder

Browse files
Files changed (2) hide show
  1. README.md +4 -4
  2. app.py +22 -41
README.md CHANGED
@@ -1,8 +1,8 @@
1
  ---
2
- title: Neo
3
- emoji: 🐇🥷🏻
4
- colorFrom: green
5
- colorTo: gray
6
  sdk: gradio
7
  sdk_version: 4.19.0
8
  app_file: app.py
 
1
  ---
2
+ title: StarCoder2
3
+ emoji: ✨2️⃣✨
4
+ colorFrom: yellow
5
+ colorTo: blue
6
  sdk: gradio
7
  sdk_version: 4.19.0
8
  app_file: app.py
app.py CHANGED
@@ -5,15 +5,14 @@ import transformers
5
  from transformers import AutoModelForCausalLM, AutoTokenizer
6
  import os
7
 
8
- title = """# Welcome to 🌟Tonic's🐇🥷🏻Neo
9
- WhiteRabbit🐇🥷🏻Neo is a model series that can be used for offensive and defensive cybersecurity. You can build with this endpoint using🐇🥷🏻Neo available here : [WhiteRabbitNeo/WhiteRabbitNeo-33B-v1.5](https://huggingface.co/WhiteRabbitNeo/WhiteRabbitNeo-33B-v1.5). You can also use 🐇🥷🏻Neo by cloning this space. Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/neo?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
10
  Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) Math 🔍 [introspector](https://huggingface.co/introspector) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [SciTonic](https://github.com/Tonic-AI/scitonic)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
11
  """
12
 
13
-
14
  default_system_prompt = """SYSTEM: You are an AI that code. Answer with code."""
15
 
16
- model_path = "WhiteRabbitNeo/WhiteRabbitNeo-33B-v1.5"
17
 
18
 
19
  hf_token = os.getenv("HF_TOKEN")
@@ -22,61 +21,43 @@ if not hf_token:
22
 
23
  model = AutoModelForCausalLM.from_pretrained(
24
  model_path,
25
- torch_dtype=torch.float16,
26
  device_map="auto",
27
- load_in_4bit=True,
28
- load_in_8bit=False,
29
- trust_remote_code=True,
30
  token=hf_token,
31
  )
32
 
33
  tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
34
 
35
- @spaces.GPU
36
- def generate_text(custom_prompt, user_input, temperature, generate_len, top_p, top_k):
37
- system_prompt = custom_prompt if custom_prompt else default_system_prompt
38
- llm_prompt = f"{system_prompt} \nUSER: {user_input} \nASSISTANT: "
39
-
40
- tokens = tokenizer.encode(llm_prompt, return_tensors="pt")
41
- tokens = tokens.to("cuda")
42
 
43
- length = tokens.shape[1]
44
- with torch.no_grad():
45
- output = model.generate(
46
- input_ids=tokens,
47
- max_length=length + generate_len,
48
- temperature=temperature,
49
- top_p=top_p,
50
- top_k=top_k,
51
- num_return_sequences=1,
52
- )
53
- generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
54
- answer = generated_text[len(llm_prompt):].strip()
55
-
56
- return answer
57
 
58
  def gradio_app():
59
  with gr.Blocks() as demo:
60
  gr.Markdown(title)
 
61
  with gr.Row():
62
- custom_prompt = gr.Textbox(label="🐇🥷🏻NeoCustom System Prompt (optional)", placeholder="Leave blank to use the default prompt...")
63
- instruction = gr.Textbox(label="Your Instruction", placeholder="Type your question here...")
64
  with gr.Row():
65
  temperature = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.5, label="Temperature")
66
- generate_len = gr.Slider(minimum=100, maximum=1024, step=10, value=100, label="Generate Length")
67
- top_p = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=1.0, label="Top P")
68
- top_k = gr.Slider(minimum=0, maximum=100, step=1, value=50, label="Top K")
69
  with gr.Row():
70
- generate_btn = gr.Button("Generate")
71
- output = gr.Code(label="🐇🥷🏻Neo:", lines=10)
72
 
73
  generate_btn.click(
74
  fn=generate_text,
75
- inputs=[custom_prompt, instruction, temperature, generate_len, top_p, top_k],
76
  outputs=output
77
  )
78
 
79
- demo.launch()
80
-
81
- if __name__ == "__main__":
82
- gradio_app()
 
5
  from transformers import AutoModelForCausalLM, AutoTokenizer
6
  import os
7
 
8
+ title = """# Welcome to 🌟Tonic's✨StarCoder
9
+ ✨StarCoder StarCoder2-15B model is a 15B parameter model trained on 600+ programming languages from The Stack v2, with opt-out requests excluded. The model uses Grouped Query Attention, a context window of 16,384 tokens with a sliding window attention of 4,096 tokens, and was trained using the Fill-in-the-Middle objective on 4+ trillion tokens. The model was trained with NVIDIA NeMo™ Framework using the NVIDIA Eos Supercomputer built with NVIDIA DGX H100 systems. You can build with this endpoint using✨StarCoder available here : [bigcode/starcoder2-15b](https://huggingface.co/bigcode/starcoder2-15b). You can also use ✨StarCoder by cloning this space. Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/starcoder2?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
10
  Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) Math 🔍 [introspector](https://huggingface.co/introspector) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [SciTonic](https://github.com/Tonic-AI/scitonic)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
11
  """
12
 
 
13
  default_system_prompt = """SYSTEM: You are an AI that code. Answer with code."""
14
 
15
+ model_path = "bigcode/starcoder2-15b"
16
 
17
 
18
  hf_token = os.getenv("HF_TOKEN")
 
21
 
22
  model = AutoModelForCausalLM.from_pretrained(
23
  model_path,
24
+ torch_dtype=torch.bfloat16,
25
  device_map="auto",
26
+ # trust_remote_code=True,
 
 
27
  token=hf_token,
28
  )
29
 
30
  tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
31
 
32
+ # import gradio as gr
33
+ # from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
 
 
 
 
 
34
 
35
+ # checkpoint = "bigcode/starcoder2-15b"
36
+ # quantization_config = BitsAndBytesConfig(load_in_8bit=True)
37
+ # tokenizer = AutoTokenizer.from_pretrained(checkpoint)
38
+ # model = AutoModelForCausalLM.from_pretrained(checkpoint, quantization_config=quantization_config).to("cuda")
39
+
40
+ def generate_text(prompt, temperature, max_length):
41
+ inputs = tokenizer.encode(prompt, return_tensors="pt").to("cuda")
42
+ outputs = model.generate(inputs, max_length=max_length, top_p=0.9, temperature=temperature)
43
+ return tokenizer.decode(outputs[0])
 
 
 
 
 
44
 
45
  def gradio_app():
46
  with gr.Blocks() as demo:
47
  gr.Markdown(title)
48
+ output = gr.Code(label="Generated Code", lines=40)
49
  with gr.Row():
50
+ generate_btn = gr.Button("Generate")
 
51
  with gr.Row():
52
  temperature = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.5, label="Temperature")
53
+ max_length = gr.Slider(minimum=100, maximum=1024, step=10, value=100, label="Generate Length")
 
 
54
  with gr.Row():
55
+ prompt = gr.Textbox(label="Enter your code prompt", placeholder="def print_hello_world():")
 
56
 
57
  generate_btn.click(
58
  fn=generate_text,
59
+ inputs=[prompt, temperature, max_length],
60
  outputs=output
61
  )
62
 
63
+ demo.launch()