iurf7irfuyytruyyugb / optimizedSD /txt2img_gradio.py
johnslegers's picture
test
121f6d3
raw
history blame
7.86 kB
import gradio as gr
import numpy as np
import torch
from torchvision.utils import make_grid
from einops import rearrange
import os, re
from PIL import Image
import torch
import pandas as pd
import numpy as np
from random import randint
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from itertools import islice
from einops import rearrange
from torchvision.utils import make_grid
import time
from pytorch_lightning import seed_everything
from torch import autocast
from contextlib import nullcontext
from ldmlib.util import instantiate_from_config
from optimUtils import split_weighted_subprompts, logger
from transformers import logging
logging.set_verbosity_error()
import mimetypes
mimetypes.init()
mimetypes.add_type("application/javascript", ".js")
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
def load_model_from_config(ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
return sd
config = "optimizedSD/v1-inference.yaml"
ckpt = "models/ldm/stable-diffusion-v1/model.ckpt"
sd = load_model_from_config(f"{ckpt}")
li, lo = [], []
for key, v_ in sd.items():
sp = key.split(".")
if (sp[0]) == "model":
if "input_blocks" in sp:
li.append(key)
elif "middle_block" in sp:
li.append(key)
elif "time_embed" in sp:
li.append(key)
else:
lo.append(key)
for key in li:
sd["model1." + key[6:]] = sd.pop(key)
for key in lo:
sd["model2." + key[6:]] = sd.pop(key)
config = OmegaConf.load(f"{config}")
model = instantiate_from_config(config.modelUNet)
_, _ = model.load_state_dict(sd, strict=False)
model.eval()
modelCS = instantiate_from_config(config.modelCondStage)
_, _ = modelCS.load_state_dict(sd, strict=False)
modelCS.eval()
modelFS = instantiate_from_config(config.modelFirstStage)
_, _ = modelFS.load_state_dict(sd, strict=False)
modelFS.eval()
del sd
def generate(
prompt,
ddim_steps,
n_iter,
batch_size,
Height,
Width,
scale,
ddim_eta,
unet_bs,
device,
seed,
outdir,
img_format,
turbo,
full_precision,
sampler,
):
C = 4
f = 8
start_code = None
model.unet_bs = unet_bs
model.turbo = turbo
model.cdevice = device
modelCS.cond_stage_model.device = device
if seed == "":
seed = randint(0, 1000000)
seed = int(seed)
seed_everything(seed)
# Logging
logger(locals(), "logs/txt2img_gradio_logs.csv")
if device != "cpu" and full_precision == False:
model.half()
modelFS.half()
modelCS.half()
tic = time.time()
os.makedirs(outdir, exist_ok=True)
outpath = outdir
sample_path = os.path.join(outpath, "_".join(re.split(":| ", prompt)))[:150]
os.makedirs(sample_path, exist_ok=True)
base_count = len(os.listdir(sample_path))
# n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
assert prompt is not None
data = [batch_size * [prompt]]
if full_precision == False and device != "cpu":
precision_scope = autocast
else:
precision_scope = nullcontext
all_samples = []
seeds = ""
with torch.no_grad():
all_samples = list()
for _ in trange(n_iter, desc="Sampling"):
for prompts in tqdm(data, desc="data"):
with precision_scope("cuda"):
modelCS.to(device)
uc = None
if scale != 1.0:
uc = modelCS.get_learned_conditioning(batch_size * [""])
if isinstance(prompts, tuple):
prompts = list(prompts)
subprompts, weights = split_weighted_subprompts(prompts[0])
if len(subprompts) > 1:
c = torch.zeros_like(uc)
totalWeight = sum(weights)
# normalize each "sub prompt" and add it
for i in range(len(subprompts)):
weight = weights[i]
# if not skip_normalize:
weight = weight / totalWeight
c = torch.add(c, modelCS.get_learned_conditioning(subprompts[i]), alpha=weight)
else:
c = modelCS.get_learned_conditioning(prompts)
shape = [batch_size, C, Height // f, Width // f]
if device != "cpu":
mem = torch.cuda.memory_allocated() / 1e6
modelCS.to("cpu")
while torch.cuda.memory_allocated() / 1e6 >= mem:
time.sleep(1)
samples_ddim = model.sample(
S=ddim_steps,
conditioning=c,
seed=seed,
shape=shape,
verbose=False,
unconditional_guidance_scale=scale,
unconditional_conditioning=uc,
eta=ddim_eta,
x_T=start_code,
sampler = sampler,
)
modelFS.to(device)
print("saving images")
for i in range(batch_size):
x_samples_ddim = modelFS.decode_first_stage(samples_ddim[i].unsqueeze(0))
x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
all_samples.append(x_sample.to("cpu"))
x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c")
Image.fromarray(x_sample.astype(np.uint8)).save(
os.path.join(sample_path, "seed_" + str(seed) + "_" + f"{base_count:05}.{img_format}")
)
seeds += str(seed) + ","
seed += 1
base_count += 1
if device != "cpu":
mem = torch.cuda.memory_allocated() / 1e6
modelFS.to("cpu")
while torch.cuda.memory_allocated() / 1e6 >= mem:
time.sleep(1)
del samples_ddim
del x_sample
del x_samples_ddim
print("memory_final = ", torch.cuda.memory_allocated() / 1e6)
toc = time.time()
time_taken = (toc - tic) / 60.0
grid = torch.cat(all_samples, 0)
grid = make_grid(grid, nrow=n_iter)
grid = 255.0 * rearrange(grid, "c h w -> h w c").cpu().numpy()
txt = (
"Samples finished in "
+ str(round(time_taken, 3))
+ " minutes and exported to "
+ sample_path
+ "\nSeeds used = "
+ seeds[:-1]
)
return Image.fromarray(grid.astype(np.uint8)), txt
demo = gr.Interface(
fn=generate,
inputs=[
"text",
gr.Slider(1, 1000, value=50),
gr.Slider(1, 100, step=1),
gr.Slider(1, 100, step=1),
gr.Slider(64, 4096, value=512, step=64),
gr.Slider(64, 4096, value=512, step=64),
gr.Slider(0, 50, value=7.5, step=0.1),
gr.Slider(0, 1, step=0.01),
gr.Slider(1, 2, value=1, step=1),
gr.Text(value="cuda"),
"text",
gr.Text(value="outputs/txt2img-samples"),
gr.Radio(["png", "jpg"], value='png'),
"checkbox",
"checkbox",
gr.Radio(["ddim", "plms","heun", "euler", "euler_a", "dpm2", "dpm2_a", "lms"], value="plms"),
],
outputs=["image", "text"],
)
demo.launch()