File size: 7,863 Bytes
121f6d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import gradio as gr
import numpy as np
import torch
from torchvision.utils import make_grid
from einops import rearrange
import os, re
from PIL import Image
import torch
import pandas as pd
import numpy as np
from random import randint
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from itertools import islice
from einops import rearrange
from torchvision.utils import make_grid
import time
from pytorch_lightning import seed_everything
from torch import autocast
from contextlib import nullcontext
from ldmlib.util import instantiate_from_config
from optimUtils import split_weighted_subprompts, logger
from transformers import logging
logging.set_verbosity_error()
import mimetypes
mimetypes.init()
mimetypes.add_type("application/javascript", ".js")


def chunk(it, size):
    it = iter(it)
    return iter(lambda: tuple(islice(it, size)), ())


def load_model_from_config(ckpt, verbose=False):
    print(f"Loading model from {ckpt}")
    pl_sd = torch.load(ckpt, map_location="cpu")
    if "global_step" in pl_sd:
        print(f"Global Step: {pl_sd['global_step']}")
    sd = pl_sd["state_dict"]
    return sd

config = "optimizedSD/v1-inference.yaml"
ckpt = "models/ldm/stable-diffusion-v1/model.ckpt"
sd = load_model_from_config(f"{ckpt}")
li, lo = [], []
for key, v_ in sd.items():
    sp = key.split(".")
    if (sp[0]) == "model":
        if "input_blocks" in sp:
            li.append(key)
        elif "middle_block" in sp:
            li.append(key)
        elif "time_embed" in sp:
            li.append(key)
        else:
            lo.append(key)
for key in li:
    sd["model1." + key[6:]] = sd.pop(key)
for key in lo:
    sd["model2." + key[6:]] = sd.pop(key)

config = OmegaConf.load(f"{config}")

model = instantiate_from_config(config.modelUNet)
_, _ = model.load_state_dict(sd, strict=False)
model.eval()

modelCS = instantiate_from_config(config.modelCondStage)
_, _ = modelCS.load_state_dict(sd, strict=False)
modelCS.eval()

modelFS = instantiate_from_config(config.modelFirstStage)
_, _ = modelFS.load_state_dict(sd, strict=False)
modelFS.eval()
del sd


def generate(
    prompt,
    ddim_steps,
    n_iter,
    batch_size,
    Height,
    Width,
    scale,
    ddim_eta,
    unet_bs,
    device,
    seed,
    outdir,
    img_format,
    turbo,
    full_precision,
    sampler,
):

    C = 4
    f = 8
    start_code = None
    model.unet_bs = unet_bs
    model.turbo = turbo
    model.cdevice = device
    modelCS.cond_stage_model.device = device

    if seed == "":
        seed = randint(0, 1000000)
    seed = int(seed)
    seed_everything(seed)
    # Logging
    logger(locals(), "logs/txt2img_gradio_logs.csv")

    if device != "cpu" and full_precision == False:
        model.half()
        modelFS.half()
        modelCS.half()

    tic = time.time()
    os.makedirs(outdir, exist_ok=True)
    outpath = outdir
    sample_path = os.path.join(outpath, "_".join(re.split(":| ", prompt)))[:150]
    os.makedirs(sample_path, exist_ok=True)
    base_count = len(os.listdir(sample_path))

    # n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
    assert prompt is not None
    data = [batch_size * [prompt]]

    if full_precision == False and device != "cpu":
        precision_scope = autocast
    else:
        precision_scope = nullcontext

    all_samples = []
    seeds = ""
    with torch.no_grad():

        all_samples = list()
        for _ in trange(n_iter, desc="Sampling"):
            for prompts in tqdm(data, desc="data"):
                with precision_scope("cuda"):
                    modelCS.to(device)
                    uc = None
                    if scale != 1.0:
                        uc = modelCS.get_learned_conditioning(batch_size * [""])
                    if isinstance(prompts, tuple):
                        prompts = list(prompts)

                    subprompts, weights = split_weighted_subprompts(prompts[0])
                    if len(subprompts) > 1:
                        c = torch.zeros_like(uc)
                        totalWeight = sum(weights)
                        # normalize each "sub prompt" and add it
                        for i in range(len(subprompts)):
                            weight = weights[i]
                            # if not skip_normalize:
                            weight = weight / totalWeight
                            c = torch.add(c, modelCS.get_learned_conditioning(subprompts[i]), alpha=weight)
                    else:
                        c = modelCS.get_learned_conditioning(prompts)

                    shape = [batch_size, C, Height // f, Width // f]

                    if device != "cpu":
                        mem = torch.cuda.memory_allocated() / 1e6
                        modelCS.to("cpu")
                        while torch.cuda.memory_allocated() / 1e6 >= mem:
                            time.sleep(1)

                    samples_ddim = model.sample(
                        S=ddim_steps,
                        conditioning=c,
                        seed=seed,
                        shape=shape,
                        verbose=False,
                        unconditional_guidance_scale=scale,
                        unconditional_conditioning=uc,
                        eta=ddim_eta,
                        x_T=start_code,
                        sampler = sampler,
                    )

                    modelFS.to(device)
                    print("saving images")
                    for i in range(batch_size):

                        x_samples_ddim = modelFS.decode_first_stage(samples_ddim[i].unsqueeze(0))
                        x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
                        all_samples.append(x_sample.to("cpu"))
                        x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c")
                        Image.fromarray(x_sample.astype(np.uint8)).save(
                            os.path.join(sample_path, "seed_" + str(seed) + "_" + f"{base_count:05}.{img_format}")
                        )
                        seeds += str(seed) + ","
                        seed += 1
                        base_count += 1

                    if device != "cpu":
                        mem = torch.cuda.memory_allocated() / 1e6
                        modelFS.to("cpu")
                        while torch.cuda.memory_allocated() / 1e6 >= mem:
                            time.sleep(1)

                    del samples_ddim
                    del x_sample
                    del x_samples_ddim
                    print("memory_final = ", torch.cuda.memory_allocated() / 1e6)

    toc = time.time()

    time_taken = (toc - tic) / 60.0
    grid = torch.cat(all_samples, 0)
    grid = make_grid(grid, nrow=n_iter)
    grid = 255.0 * rearrange(grid, "c h w -> h w c").cpu().numpy()

    txt = (
        "Samples finished in "
        + str(round(time_taken, 3))
        + " minutes and exported to "
        + sample_path
        + "\nSeeds used = "
        + seeds[:-1]
    )
    return Image.fromarray(grid.astype(np.uint8)), txt


demo = gr.Interface(
    fn=generate,
    inputs=[
        "text",
        gr.Slider(1, 1000, value=50),
        gr.Slider(1, 100, step=1),
        gr.Slider(1, 100, step=1),
        gr.Slider(64, 4096, value=512, step=64),
        gr.Slider(64, 4096, value=512, step=64),
        gr.Slider(0, 50, value=7.5, step=0.1),
        gr.Slider(0, 1, step=0.01),
        gr.Slider(1, 2, value=1, step=1),
        gr.Text(value="cuda"),
        "text",
        gr.Text(value="outputs/txt2img-samples"),
        gr.Radio(["png", "jpg"], value='png'),
        "checkbox",
        "checkbox",
        gr.Radio(["ddim", "plms","heun", "euler", "euler_a", "dpm2", "dpm2_a", "lms"], value="plms"),
    ],
    outputs=["image", "text"],
)
demo.launch()