Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,993 Bytes
45454da 1f0244d 45454da e3ed184 ce76c69 bedc750 b621c94 e3ed184 45454da e3ed184 45454da e3ed184 e06ca4c 38a3645 e3ed184 f78fa12 e3ed184 e06ca4c b621c94 fa9d7e5 e3ed184 fa9d7e5 e3ed184 9c77576 97e1857 9c77576 3897f18 9c77576 71a3f78 a2ef25c 71a3f78 fec3f3e 9c77576 e3ed184 b621c94 fa9d7e5 4a97c2b fa9d7e5 b621c94 e3ed184 fa9d7e5 e3ed184 38a3645 78b066f 9c77576 832c4d6 9c77576 a6d9646 1d606db 9c77576 47ce9e4 78b066f a2ef25c 78b066f fb0ff2b 78b066f fb0ff2b 77b1713 fb0ff2b 78b066f fb0ff2b 78b066f a6d9646 78b066f 77b1713 fb0ff2b 77b1713 fb0ff2b 78b066f e3ed184 78b066f e3ed184 a2ef25c 1d606db b621c94 3897f18 b621c94 e3ed184 b621c94 78b066f e3ed184 1d606db e3ed184 6cc3f59 e3ed184 6cc3f59 e3ed184 fa9d7e5 e3ed184 fa9d7e5 6cc3f59 e3ed184 fa9d7e5 e3ed184 fa9d7e5 e3ed184 fa9d7e5 6cc3f59 fa9d7e5 e3ed184 fa9d7e5 e3ed184 fa9d7e5 e3ed184 fa9d7e5 e3ed184 6cc3f59 e3ed184 1f0244d e3ed184 1f0244d e3ed184 45454da e3ed184 6cc3f59 1f0244d 599612f 70199bd 70fdd62 70199bd e3ed184 70fdd62 70199bd d34be48 70fdd62 02df4a2 d34be48 2a82684 7ff99e1 e3ed184 70fdd62 02df4a2 e367927 3897f18 02df4a2 70fdd62 e367927 70fdd62 d3eb29d a6d9646 d3eb29d e3ed184 e06ca4c e3ed184 70199bd a6d9646 70199bd 71a3f78 a2ef25c 3897f18 6cc3f59 e367927 d3eb29d a2ef25c d3eb29d a6d9646 70199bd bf588e1 2cda891 70199bd e3ed184 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 |
#=======================================================================
# https://huggingface.co./spaces/asigalov61/Score-2-Performance-Transformer
#=======================================================================
import os
import time as reqtime
import datetime
from pytz import timezone
import copy
from itertools import groupby
import tqdm
import spaces
import gradio as gr
import torch
from x_transformer_1_23_2 import *
import random
import TMIDIX
from midi_to_colab_audio import midi_to_colab_audio
from huggingface_hub import hf_hub_download
# =================================================================================================
print('Loading model...')
SEQ_LEN = 1802
PAD_IDX = 771
DEVICE = 'cuda' # 'cpu'
# instantiate the model
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 1024,
depth = 8,
heads = 8,
rotary_pos_emb=True,
attn_flash = True
)
)
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)
print('=' * 70)
print('Loading model checkpoint...')
model_checkpoint = hf_hub_download(repo_id='asigalov61/Score-2-Performance-Transformer',
filename='Score_2_Performance_Transformer_Final_Small_Trained_Model_4496_steps_1.5185_loss_0.5589_acc.pth'
)
model.load_state_dict(torch.load(model_checkpoint, map_location='cpu', weights_only=True))
model = torch.compile(model, mode='max-autotune')
dtype = torch.bfloat16
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)
print('=' * 70)
print('Done!')
print('=' * 70)
# =================================================================================================
def load_midi(midi_file)
raw_score = TMIDIX.midi2single_track_ms_score(midi_file)
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)
if escore_notes[0]:
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes[0], timings_divider=16)
pe = escore_notes[0]
melody_chords = []
seen = []
for e in escore_notes:
if e[3] != 9:
#=======================================================
dtime = max(0, min(255, e[1]-pe[1]))
if dtime != 0:
seen = []
# Durations
dur = max(1, min(255, e[2]))
# Pitches
ptc = max(1, min(127, e[4]))
vel = max(1, min(127, e[5]))
if ptc not in seen:
melody_chords.append([dtime, dur, ptc, vel])
seen.append(ptc)
pe = e
print('=' * 70)
print('Number of notes in a composition:', len(melody_chords))
print('=' * 70)
src_melody_chords_f = []
melody_chords_f = []
for i in range(0, len(melody_chords), 300):
chunk = melody_chords[i:i+300]
src = []
src1 = []
trg = []
if len(chunk) == 300:
for mm in chunk:
src.extend([mm[0], mm[2]+256])
src1.append([mm[0], mm[2]+256, mm[1]+384, mm[3]+640])
trg.extend([mm[0], mm[2]+256, mm[1]+384, mm[3]+640])
src_melody_chords_f.append(src1)
melody_chords_f.append([768] + src + [769] + trg + [770])
print('Done!')
print('=' * 70)
print('Number of composition chunks:', len(melody_chords_f))
print('=' * 70)
return melody_chords_f, src_melody_chords_f
@spaces.GPU
def Convert_Score_to_Performance(input_midi,
input_gen_type,
input_number_prime_chords,
input_number_gen_chords,
input_use_original_durations,
input_match_original_pitches_counts,
input_number_prime_tokens,
input_number_gen_tokens,
input_num_memory_tokens,
input_model_temperature,
input_model_top_p
):
#===============================================================================
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('=' * 70)
fn = os.path.basename(input_midi)
fn1 = fn.split('.')[0]
print('=' * 70)
print('Requested settings:')
print('=' * 70)
print('Input MIDI file name:', fn)
print('Generation type:', input_gen_type)
print('Number of prime chords:', input_number_prime_chords)
print('Number of chords to generate:', input_number_gen_chords)
print('Use original durations:', input_use_original_durations)
print('Match original pitches counts:', input_match_original_pitches_counts)
print('Number of prime tokens:', input_number_prime_tokens)
print('Number of tokens to generate:', input_number_gen_tokens)
print('Number of memory tokens:', input_num_memory_tokens)
print('Model temperature:', input_model_temperature)
print('Model sampling top p value:', input_model_top_p)
print('=' * 70)
#===============================================================================
print('Loading MIDI...')
#===============================================================================
# Raw single-track ms score
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
#===============================================================================
# Enhanced score notes
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
escore_notes = [e for e in escore_notes if e[6] < 72 or e[6] == 128]
#=======================================================
# PRE-PROCESSING
#===============================================================================
# Augmented enhanced score notes
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=32, legacy_timings=True)
#===============================================================================
dscore = TMIDIX.enhanced_delta_score_notes(escore_notes)
cscore = TMIDIX.chordify_score(dscore)
#===============================================================================
score_toks = []
control_toks = []
prime_toks = []
for c in cscore:
ctime = c[0][0]
#=================================================================
chord = sorted(c, key=lambda x: -x[5])
gnotes = []
gdrums = []
for k, v in groupby(chord, key=lambda x: x[5]):
if k == 128:
gdrums.extend(sorted(v, key=lambda x: x[3], reverse=True))
else:
gnotes.append(sorted(v, key=lambda x: x[3], reverse=True))
#=================================================================
chord_toks = []
ctoks = []
ptoks = []
chord_toks.append(ctime)
ptoks.append(ctime)
if gdrums:
chord_toks.extend([e[3]+128 for e in gdrums] + [128])
ptoks.extend([e[3]+128 for e in gdrums] + [128])
else:
chord_toks.append(128)
ptoks.append(128)
if gnotes:
for g in gnotes:
durs = [e[1] // 4 for e in g]
clipped_dur = max(1, min(31, min(durs)))
chan = max(0, min(8, g[0][5] // 8))
chan_dur_tok = ((chan * 32) + clipped_dur) + 256
ctoks.append([chan_dur_tok, len(g)])
ptoks.append(chan_dur_tok)
ptoks.extend([e[3]+544 for e in g])
score_toks.append(chord_toks)
control_toks.append(ctoks)
prime_toks.append(ptoks)
print('Done!')
print('=' * 70)
#==================================================================
print('Sample output events', prime_toks[:16])
print('=' * 70)
print('Generating...')
model.to(DEVICE)
model.eval()
#==================================================================
def generate_continuation(num_prime_tokens, num_gen_tokens):
x = torch.tensor(TMIDIX.flatten(prime_toks)[:num_prime_tokens], dtype=torch.long, device=DEVICE)
with ctx:
out = model.generate(x,
num_gen_tokens,
filter_logits_fn=top_p,
filter_kwargs={'thres': input_model_top_p},
temperature=input_model_temperature,
return_prime=True,
verbose=True)
y = out.tolist()[0]
return y
#==================================================================
def generate_tokens(seq, max_num_ptcs=5, max_tries=10):
input = copy.deepcopy(seq)
pcount = 0
y = 545
tries = 0
gen_tokens = []
seen = False
if 256 < input[-1] < 544:
seen = True
while pcount < max_num_ptcs and y > 255 and tries < max_tries:
x = torch.tensor(input[-input_num_memory_tokens:], dtype=torch.long, device=DEVICE)
with ctx:
out = model.generate(x,
1,
filter_logits_fn=top_p,
filter_kwargs={'thres': input_model_top_p},
return_prime=False,
verbose=False)
y = out[0].tolist()[0]
if 256 < y < 544:
if not seen:
input.append(y)
gen_tokens.append(y)
seen = True
else:
tries += 1
if y > 544 and seen:
if pcount < max_num_ptcs and y not in gen_tokens:
input.append(y)
gen_tokens.append(y)
pcount += 1
else:
tries += 1
return gen_tokens
#==================================================================
song = []
if input_gen_type == 'Freestyle':
output = generate_continuation(input_number_prime_tokens, input_number_gen_tokens)
song.extend(output)
else:
for i in range(input_number_prime_chords):
song.extend(prime_toks[i])
for i in tqdm.tqdm(range(input_number_prime_chords, input_number_prime_chords+input_number_gen_chords)):
song.extend(score_toks[i])
if control_toks[i]:
for ct in control_toks[i]:
if input_use_original_durations:
song.append(ct[0])
if input_match_original_pitches_counts:
out_seq = generate_tokens(song, ct[1])
else:
out_seq = generate_tokens(song)
song.extend(out_seq)
print('=' * 70)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
print('=' * 70)
print('Sample INTs', song[:15])
print('=' * 70)
if len(song) != 0:
song_f = []
time = 0
dur = 32
channel = 0
pitch = 60
vel = 90
patches = [0, 10, 19, 24, 35, 40, 52, 56, 65, 9, 0, 0, 0, 0, 0, 0]
velocities = [80, 100, 90, 100, 110, 100, 100, 100, 100, 110]
for ss in song:
if 0 <= ss < 128:
time += ss * 32
if 128 < ss < 256:
song_f.append(['note', time, 32, 9, ss-128, velocities[9], 128])
if 256 < ss < 544:
dur = ((ss-256) % 32) * 4 * 32
channel = (ss-256) // 32
if 544 < ss < 672:
patch = channel * 8
pitch = ss-544
song_f.append(['note', time, dur, channel, pitch, velocities[channel], patch])
fn1 = "Score-2-Performance-Transformer-Composition"
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Score 2 Performance Transformer',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=soundfont,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
#========================================================
output_midi_title = str(fn1)
output_midi_summary = str(song_f[:3])
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)
print('Output MIDI file name:', output_midi)
print('Output MIDI title:', output_midi_title)
print('Output MIDI summary:', output_midi_summary)
print('=' * 70)
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot
# =================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Score 2 Performance Transformer</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Convert any MIDI score to a nice performance</h1>")
gr.Markdown("## Upload your MIDI or select a sample example MIDI below")
gr.Markdown("### For best results use MIDIs with 1:2 notes to drums ratio")
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
gr.Markdown("## Select generation type")
input_gen_type = gr.Radio(["Controlled", "Freestyle"], value='Controlled', label="Generation type")
gr.Markdown("## Controlled generation options")
input_number_prime_chords = gr.Slider(0, 512, value=0, step=8, label="Number of prime chords")
input_number_gen_chords = gr.Slider(16, 512, value=256, step=8, label="Number of chords to generate")
input_use_original_durations = gr.Checkbox(label="Use original durations", value=True)
input_match_original_pitches_counts = gr.Checkbox(label="Match original pitches counts", value=True)
gr.Markdown("## Freestyle continuation options")
input_number_prime_tokens = gr.Slider(0, 1024, value=512, step=16, label="Number of prime tokens")
input_number_gen_tokens = gr.Slider(0, 3072, value=1024, step=16, label="Number of tokens to generate")
gr.Markdown("## Model options")
input_num_memory_tokens = gr.Slider(1024, 4096, value=2048, step=16, label="Number of memory tokens")
input_model_temperature = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Model temperature")
input_model_top_p = gr.Slider(0.1, 1, value=0.96, step=0.01, label="Model sampling top p value")
run_btn = gr.Button("generate", variant="primary")
gr.Markdown("## Generation results")
output_midi_title = gr.Textbox(label="Output MIDI title")
output_midi_summary = gr.Textbox(label="Output MIDI summary")
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="Output MIDI score plot")
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
run_event = run_btn.click(Convert_Score_to_Performance, [input_midi,
input_gen_type,
input_number_prime_chords,
input_number_gen_chords,
input_use_original_durations,
input_match_original_pitches_counts,
input_number_prime_tokens,
input_number_gen_tokens,
input_num_memory_tokens,
input_model_temperature,
input_model_top_p,
],
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])
gr.Examples(
[["Rock Violin.mid", "Controlled", 0, 512, True, True, 512, 1024, 2048, 0.9, 0.96],
["Come To My Window.mid", "Controlled", 128, 256, False, False, 512, 1024, 2048, 0.9, 0.96],
["Sharing The Night Together.kar", "Controlled", 128, 256, True, True, 512, 1024, 2048, 0.9, 0.96],
["Hotel California.mid", "Controlled", 128, 256, True, True, 512, 1024, 2048, 0.9, 0.96],
["Nothing Else Matters.kar", "Controlled", 128, 256, True, True, 512, 1024, 2048, 0.9, 0.96],
],
[input_midi,
input_gen_type,
input_number_prime_chords,
input_number_gen_chords,
input_use_original_durations,
input_match_original_pitches_counts,
input_number_prime_tokens,
input_number_gen_tokens,
input_num_memory_tokens,
input_model_temperature,
input_model_top_p,
],
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot],
Generate_Rock_Song,
cache_examples=True,
cache_mode='eager'
)
app.queue().launch() |