asigalov61 commited on
Commit
38a3645
·
verified ·
1 Parent(s): e06ca4c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -38
app.py CHANGED
@@ -24,6 +24,50 @@ from midi_to_colab_audio import midi_to_colab_audio
24
 
25
  from huggingface_hub import hf_hub_download
26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  # =================================================================================================
28
 
29
  @spaces.GPU
@@ -66,45 +110,7 @@ def Convert_Score_to_Performance(input_midi,
66
  print('Model sampling top p value:', input_model_top_p)
67
  print('=' * 70)
68
 
69
- #===============================================================================
70
-
71
- print('Loading model...')
72
 
73
- SEQ_LEN = 4096
74
- PAD_IDX = 673
75
- DEVICE = 'cuda' # 'cpu'
76
-
77
- # instantiate the model
78
-
79
- model = TransformerWrapper(
80
- num_tokens = PAD_IDX+1,
81
- max_seq_len = SEQ_LEN,
82
- attn_layers = Decoder(dim = 1024, depth = 16, heads = 16, rotary_pos_emb=True, attn_flash = True)
83
- )
84
-
85
- model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)
86
-
87
- model.to(DEVICE)
88
- print('=' * 70)
89
-
90
- print('Loading model checkpoint...')
91
-
92
- model.load_state_dict(
93
- torch.load('Guided_Rpck_Music_Transformer_Trained_Model_12081_steps_0.4113_loss_0.8747_acc.pth',
94
- map_location=DEVICE))
95
- print('=' * 70)
96
-
97
- model.eval()
98
-
99
- if DEVICE == 'cpu':
100
- dtype = torch.bfloat16
101
- else:
102
- dtype = torch.bfloat16
103
-
104
- ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)
105
-
106
- print('Done!')
107
- print('=' * 70)
108
 
109
  #===============================================================================
110
 
@@ -204,6 +210,9 @@ def Convert_Score_to_Performance(input_midi,
204
  print('=' * 70)
205
  print('Generating...')
206
 
 
 
 
207
  #==================================================================
208
 
209
  def generate_continuation(num_prime_tokens, num_gen_tokens):
 
24
 
25
  from huggingface_hub import hf_hub_download
26
 
27
+ # =================================================================================================
28
+
29
+ print('Loading model...')
30
+
31
+ SEQ_LEN = 1802
32
+ PAD_IDX = 771
33
+ DEVICE = 'cuda' # 'cpu'
34
+
35
+ # instantiate the model
36
+
37
+ model = TransformerWrapper(
38
+ num_tokens = PAD_IDX+1,
39
+ max_seq_len = SEQ_LEN,
40
+ attn_layers = Decoder(dim = 1024,
41
+ depth = 8,
42
+ heads = 8,
43
+ rotary_pos_emb=True,
44
+ attn_flash = True
45
+ )
46
+ )
47
+
48
+ model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)
49
+
50
+
51
+ print('=' * 70)
52
+
53
+ print('Loading model checkpoint...')
54
+
55
+ model_checkpoint = hf_hub_download(repo_id='asigalov61/Score-2-Performance-Transformer',
56
+ filename='Score_2_Performance_Transformer_Final_Small_Trained_Model_4496_steps_1.5185_loss_0.5589_acc.pth'
57
+ )
58
+
59
+ model.load_state_dict(torch.load(model_checkpoint, map_location='cpu', weights_only=True))
60
+
61
+ model = torch.compile(model, mode='max-autotune')
62
+
63
+ dtype = torch.bfloat16
64
+
65
+ ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)
66
+
67
+ print('=' * 70)
68
+ print('Done!')
69
+ print('=' * 70)
70
+
71
  # =================================================================================================
72
 
73
  @spaces.GPU
 
110
  print('Model sampling top p value:', input_model_top_p)
111
  print('=' * 70)
112
 
 
 
 
113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114
 
115
  #===============================================================================
116
 
 
210
  print('=' * 70)
211
  print('Generating...')
212
 
213
+ model.to(DEVICE)
214
+ model.eval()
215
+
216
  #==================================================================
217
 
218
  def generate_continuation(num_prime_tokens, num_gen_tokens):