File size: 7,455 Bytes
973bffe
 
a9de279
 
973bffe
 
 
 
5f82978
973bffe
 
a9de279
dd25d29
4bd7a10
95c4177
5665b89
95c4177
4bd7a10
95c4177
 
4bd7a10
95c4177
4bd7a10
 
95c4177
 
 
 
 
973bffe
 
 
 
 
a9de279
 
973bffe
a9de279
 
 
973bffe
 
 
 
 
 
7e41ac7
a455fe1
1948f3b
 
5665b89
 
 
 
 
 
 
1ea454c
 
1948f3b
5aec74c
9bfcdc8
5665b89
 
1ea454c
5665b89
1ea454c
5665b89
 
 
 
 
 
 
1ea454c
 
9bfcdc8
5aec74c
1ea454c
5665b89
5aec74c
324b7a2
9bfcdc8
5aec74c
1ea454c
5665b89
324b7a2
 
9bfcdc8
a455fe1
 
 
 
 
9bfcdc8
1ea454c
9bfcdc8
324b7a2
1ea454c
a455fe1
1ea454c
a455fe1
324b7a2
 
1ea454c
324b7a2
 
 
1ea454c
9bfcdc8
5aec74c
1ea454c
 
324b7a2
a0b81f5
9bfcdc8
5665b89
 
 
1948f3b
52cf31b
324b7a2
52cf31b
5665b89
52cf31b
5665b89
 
324b7a2
5665b89
324b7a2
 
52cf31b
 
324b7a2
52cf31b
9bfcdc8
1ea454c
9bfcdc8
324b7a2
1ea454c
a455fe1
1ea454c
 
a455fe1
324b7a2
 
1ea454c
324b7a2
 
 
1ea454c
52cf31b
9bfcdc8
1ea454c
5665b89
324b7a2
5665b89
1ea454c
5665b89
1ea454c
 
324b7a2
 
1ea454c
324b7a2
 
1ea454c
a9de279
9bfcdc8
a0b81f5
5665b89
1ea454c
5665b89
 
1ea454c
 
9bfcdc8
1948f3b
 
a0b81f5
5aec74c
5665b89
 
 
a455fe1
5665b89
 
a0b81f5
9bfcdc8
a455fe1
5665b89
 
 
 
 
 
 
a455fe1
 
 
 
 
5665b89
 
 
 
 
 
 
 
 
 
 
 
a0b81f5
52cf31b
a0b81f5
 
5665b89
9bfcdc8
 
 
 
5665b89
9bfcdc8
973bffe
 
5665b89
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import gradio as gr
from transformers import pipeline
import pandas as pd
import os

# Load the model
classifier = pipeline(
    "text-classification", 
    model="ashishkgpian/biobert_icd9_classifier_ehr"
)

# Load ICD9 codes data
icd9_data = pd.read_csv('D_ICD_DIAGNOSES.csv')
icd9_data.columns = ['ROW_ID', 'ICD9_CODE', 'SHORT_TITLE', 'LONG_TITLE']

def preprocessing(test_df):
    test_df.loc[
        test_df['ICD9_CODE'].str.startswith("V"), 'ICD9_CODE'] = test_df.ICD9_CODE.apply(
        lambda x: x[:4])
    test_df.loc[
        test_df['ICD9_CODE'].str.startswith("E"), 'ICD9_CODE'] = test_df.ICD9_CODE.apply(
        lambda x: x[:4])
    test_df.loc[(~test_df.ICD9_CODE.str.startswith("E")) & (
        ~test_df.ICD9_CODE.str.startswith("V")), 'ICD9_CODE'] = test_df.ICD9_CODE.apply(
        lambda x: x[:3])
    return test_df

icd9_data = preprocessing(icd9_data)

def classify_symptoms(text):
    try:
        results = classifier(text, top_k=5)
        formatted_results = []
        for result in results:
            code = result['label']
            code_info = icd9_data[icd9_data['ICD9_CODE'] == code]
            formatted_results.append({
                "ICD9 Code": code,
                "Short Title": code_info['SHORT_TITLE'].iloc[0] if not code_info.empty else "N/A",
                "Long Title": code_info['LONG_TITLE'].iloc[0] if not code_info.empty else "N/A",
                "Confidence": f"{result['score']:.2%}"
            })
        return formatted_results
    except Exception as e:
        return f"Error processing classification: {str(e)}"

# Enhanced CSS with white background and black text

custom_css = """
.gradio-container {
    width: 100% !important;
    max-width: 100% !important;
    margin: 0 !important;
    padding: 0 !important;
    min-height: 100vh !important;
    display: flex !important;
    flex-direction: column !important;
    background-color: #000000 !important;
    color: #ffffff !important;
}
.main-container {
    text-align: center;
    padding: 2rem;
    margin: 0;
    background: #000000;
    width: 100%;
    color: #ffffff;
}
.content-wrapper {
    max-width: 1400px;
    margin: 0 auto;
    padding: 0 2rem;
    width: 100%;
    box-sizing: border-box;
    background: #000000;
    color: #ffffff;
}
h1 {
    color: #b388ff !important;
    font-size: 3rem !important;
    margin-bottom: 0.5rem !important;
    font-weight: 700 !important;
}
h3 {
    color: #9575cd !important;
    font-size: 1.4rem !important;
    font-weight: 500 !important;
    margin-bottom: 2rem !important;
}
.input-output-row {
    display: flex !important;
    gap: 2rem !important;
    margin: 2rem 0 !important;
}
.input-container {
    background: #121212 !important;
    padding: 2rem !important;
    border-radius: 12px !important;
    box-shadow: 0 4px 6px rgba(255, 255, 255, 0.05) !important;
    width: 50% !important;
    border: 1px solid #333333 !important;
    flex: 1 !important;
}
.input-container label {
    color: #ffffff !important;
    font-weight: 600 !important;
    font-size: 1.1rem !important;
    margin-bottom: 0.5rem !important;
    background: transparent !important;
}
textarea {
    background: #1e1e1e !important;
    color: #ffffff !important;
    border: 2px solid #673ab7 !important;
    border-radius: 8px !important;
    padding: 1rem !important;
    font-size: 1.2rem !important;
    min-height: 150px !important;
    width: 100% !important;
}
.submit-btn {
    background-color: #673ab7 !important;
    color: white !important;
    padding: 1rem 3rem !important;
    border-radius: 8px !important;
    font-size: 1.2rem !important;
    margin-top: 1.5rem !important;
    transition: all 0.3s ease !important;
    width: auto !important;
    font-weight: 600 !important;
    border: none !important;
}
.submit-btn:hover {
    background-color: #5e35b1 !important;
}
.output-container {
    background: #121212 !important;
    padding: 2rem !important;
    border-radius: 12px !important;
    box-shadow: 0 4px 6px rgba(255, 255, 255, 0.05) !important;
    width: 50% !important;
    border: 1px solid #333333 !important;
    color: #ffffff !important;
    flex: 1 !important;
}
.output-container label {
    color: #ffffff !important;
    font-weight: 600 !important;
    font-size: 1.1rem !important;
    margin-bottom: 1rem !important;
    background: transparent !important;
}
.examples-container {
    background: #121212 !important;
    padding: 2rem !important;
    border-radius: 12px !important;
    margin: 2rem 0 !important;
    box-shadow: 0 4px 6px rgba(255, 255, 255, 0.05) !important;
    width: 100% !important;
    border: 1px solid #333333 !important;
    color: #ffffff !important;
}
.examples-container label {
    color: #ffffff !important;
    font-weight: 600 !important;
    font-size: 1.1rem !important;
    background: transparent !important;
}
.footer {
    text-align: center;
    padding: 2rem;
    background: #000000;
    margin-top: auto;
    width: 100%;
    border-top: 1px solid #333333;
    color: #ffffff;
}
"""

with gr.Blocks(css=custom_css) as demo:
    with gr.Row(elem_classes=["main-container"]):
        with gr.Column(elem_classes=["content-wrapper"]):
            gr.Markdown(
                """
                # 🏥 Clinical Symptom ICD9 Classifier
                ### AI-Powered Medical Diagnosis Code Suggestion Tool
                """
            )
    
            with gr.Row(elem_classes=["input-output-row"]):
                with gr.Column(elem_classes=["input-container"]):
                    input_text = gr.Textbox(
                        label="Clinical Symptom Description",
                        placeholder="Enter detailed patient symptoms and clinical observations...",
                        lines=5
                    )
                    submit_btn = gr.Button("Analyze Symptoms", elem_classes=["submit-btn"])
                
                with gr.Column(elem_classes=["output-container"]):
                    output = gr.JSON(
                        label="Suggested ICD9 Diagnostic Codes with Descriptions"
                    )
            
            with gr.Row(elem_classes=["examples-container"]):
                examples = gr.Examples(
                    examples=[
                        ["45-year-old male experiencing severe chest pain, radiating to left arm, with shortness of breath and excessive sweating"],
                        ["Persistent headache for 2 weeks, accompanied by dizziness and occasional blurred vision"],
                        ["Diabetic patient reporting frequent urination, increased thirst, and unexplained weight loss"],
                        ["Elderly patient with chronic knee pain, reduced mobility, and signs of inflammation"]
                    ],
                    inputs=input_text,
                    label="Example Clinical Cases"
                )
    
    submit_btn.click(fn=classify_symptoms, inputs=input_text, outputs=output)
    input_text.submit(fn=classify_symptoms, inputs=input_text, outputs=output)
    
    with gr.Row(elem_classes=["footer"]):
        gr.Markdown(
            """
            ⚕️ <strong>Medical Disclaimer:</strong> This AI tool is designed to assist medical professionals in ICD9 code classification.
            Always verify suggestions with clinical judgment and consult appropriate medical resources.
            """
        )

if __name__ == "__main__":
    demo.launch(share=True)