Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,108 Bytes
853a4c5 cb27a07 853a4c5 cb27a07 853a4c5 cb27a07 f99c3a8 cb27a07 f99c3a8 853a4c5 cb27a07 8556407 cb27a07 8556407 6d3242d f99c3a8 853a4c5 cb27a07 34e29ac 853a4c5 f99c3a8 853a4c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
import gradio as gr
import spaces
from transformers import pipeline
from typing import List, Dict, Any
def merge_tokens(tokens: List[Dict[str, any]]) -> List[Dict[str, any]]:
"""
Merges tokens that belong to the same entity into a single token.
Args:
tokens (List[Dict[str, any]]): A list of token dictionaries, each containing information about
the entity, word, start, end, and score.
Returns:
List[Dict[str, any]]: A list of merged token dictionaries, where tokens that are part of the
same entity are combined into a single token with updated word, end,
and score values.
"""
merged_tokens = []
for token in tokens:
if merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:]):
# If the current token continues the entity of the last one, merge them
last_token = merged_tokens[-1]
last_token['word'] += token['word'].replace('##', '')
last_token['end'] = token['end']
last_token['score'] = (last_token['score'] + token['score']) / 2
else:
# Otherwise, add the token to the list
merged_tokens.append(token)
return merged_tokens
# Initialize Model
get_completion = pipeline("ner", model="dslim/bert-base-NER", device=0)
@spaces.GPU(duration=120)
def ner(input: str) -> Dict[str, Any]:
"""
Performs Named Entity Recognition (NER) on the given input text and merges tokens that belong
to the same entity into a single entity.
Args:
input (str): The input text to analyze for named entities.
Returns:
Dict[str, Any]: A dictionary containing the original text and a list of identified entities
with merged tokens.
- "text": The original input text.
- "entities": A list of dictionaries, where each dictionary contains information
about a recognized entity, including the word, entity type, score, and positions.
"""
output = get_completion(input)
merged_tokens = merge_tokens(output)
return {"text": input, "entities": merged_tokens}
####### GRADIO APP #######
title = """<h1 id="title"> Named Entity Recognition </h1>"""
description = """
- The model used for Recognizing entities [BERT-BASE-NER](https://huggingface.co./dslim/bert-base-NER).
"""
css = '''
h1#title {
text-align: center;
}
'''
theme = gr.themes.Soft()
demo = gr.Blocks(css=css, theme=theme)
with demo:
gr.Markdown(title)
gr.Markdown(description)
interface = gr.Interface(fn=ner,
inputs=[gr.Textbox(label="Text to find entities", lines=10)],
outputs=[gr.HighlightedText(label="Text with entities")],
allow_flagging="never",
examples=["My name is Andrew, I'm building DeeplearningAI and I live in California", "My name is Poli, I live in Vienna and work at HuggingFace"])
demo.launch() |