Spaces:
Running
on
Zero
Running
on
Zero
Ashish Soni
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,25 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from transformers import pipeline
|
|
|
3 |
|
4 |
-
def merge_tokens(tokens):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
merged_tokens = []
|
6 |
for token in tokens:
|
7 |
if merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:]):
|
8 |
-
# If current token continues the entity of the last one, merge them
|
9 |
last_token = merged_tokens[-1]
|
10 |
last_token['word'] += token['word'].replace('##', '')
|
11 |
last_token['end'] = token['end']
|
@@ -16,19 +30,51 @@ def merge_tokens(tokens):
|
|
16 |
|
17 |
return merged_tokens
|
18 |
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
output = get_completion(input)
|
23 |
merged_tokens = merge_tokens(output)
|
24 |
return {"text": input, "entities": merged_tokens}
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
outputs=[gr.HighlightedText(label="Text with entities")],
|
30 |
-
title="NER with dslim/bert-base-NER",
|
31 |
-
description="Find entities using the `dslim/bert-base-NER` model under the hood!",
|
32 |
allow_flagging="never",
|
33 |
examples=["My name is Andrew, I'm building DeeplearningAI and I live in California", "My name is Poli, I live in Vienna and work at HuggingFace"])
|
34 |
|
|
|
1 |
import gradio as gr
|
2 |
+
import spaces
|
3 |
from transformers import pipeline
|
4 |
+
from typing import List, Dict, Any
|
5 |
|
6 |
+
def merge_tokens(tokens: List[Dict[str, any]]) -> List[Dict[str, any]]:
|
7 |
+
"""
|
8 |
+
Merges tokens that belong to the same entity into a single token.
|
9 |
+
|
10 |
+
Args:
|
11 |
+
tokens (List[Dict[str, any]]): A list of token dictionaries, each containing information about
|
12 |
+
the entity, word, start, end, and score.
|
13 |
+
|
14 |
+
Returns:
|
15 |
+
List[Dict[str, any]]: A list of merged token dictionaries, where tokens that are part of the
|
16 |
+
same entity are combined into a single token with updated word, end,
|
17 |
+
and score values.
|
18 |
+
"""
|
19 |
merged_tokens = []
|
20 |
for token in tokens:
|
21 |
if merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:]):
|
22 |
+
# If the current token continues the entity of the last one, merge them
|
23 |
last_token = merged_tokens[-1]
|
24 |
last_token['word'] += token['word'].replace('##', '')
|
25 |
last_token['end'] = token['end']
|
|
|
30 |
|
31 |
return merged_tokens
|
32 |
|
33 |
+
# Initialize Model
|
34 |
+
get_completion = pipeline("ner", model="dslim/bert-base-NER", device=0)
|
35 |
+
|
36 |
+
@spaces.GPU(duration=120)
|
37 |
+
def ner(input: str) -> Dict[str, Any]:
|
38 |
+
"""
|
39 |
+
Performs Named Entity Recognition (NER) on the given input text and merges tokens that belong
|
40 |
+
to the same entity into a single entity.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
input (str): The input text to analyze for named entities.
|
44 |
|
45 |
+
Returns:
|
46 |
+
Dict[str, Any]: A dictionary containing the original text and a list of identified entities
|
47 |
+
with merged tokens.
|
48 |
+
- "text": The original input text.
|
49 |
+
- "entities": A list of dictionaries, where each dictionary contains information
|
50 |
+
about a recognized entity, including the word, entity type, score, and positions.
|
51 |
+
"""
|
52 |
output = get_completion(input)
|
53 |
merged_tokens = merge_tokens(output)
|
54 |
return {"text": input, "entities": merged_tokens}
|
55 |
|
56 |
+
####### GRADIO APP #######
|
57 |
+
title = """<h1 id="title"> Named Entity Recognition </h1>"""
|
58 |
+
|
59 |
+
description = """
|
60 |
+
- The model used for Recognizing entities [BERT-BASE-NER](https://huggingface.co/dslim/bert-base-NER).
|
61 |
+
"""
|
62 |
+
|
63 |
+
css = '''
|
64 |
+
h1#title {
|
65 |
+
text-align: center;
|
66 |
+
}
|
67 |
+
'''
|
68 |
+
|
69 |
+
theme = gr.themes.Soft()
|
70 |
+
demo = gr.Blocks(css=css, theme=theme)
|
71 |
+
|
72 |
+
with demo:
|
73 |
+
gr.Markdown(title)
|
74 |
+
gr.Markdown(description)
|
75 |
+
interface = gr.Interface(fn=ner,
|
76 |
+
inputs=[gr.Textbox(label="Text to find entities", lines=10)],
|
77 |
outputs=[gr.HighlightedText(label="Text with entities")],
|
|
|
|
|
78 |
allow_flagging="never",
|
79 |
examples=["My name is Andrew, I'm building DeeplearningAI and I live in California", "My name is Poli, I live in Vienna and work at HuggingFace"])
|
80 |
|