Spaces:
Sleeping
Sleeping
import gradio as gr | |
from PIL import Image | |
import spaces | |
from transformers import pipeline | |
# Initialize Model | |
get_completion = pipeline("image-to-text",model="Salesforce/blip-image-captioning-base", device=0) | |
def captioner(input: Image.Image) -> str: | |
""" | |
Generate a caption for the given image using the BLIP-IMAGE-CAPTIONING-BASE model. | |
Args: | |
input (Image.Image): The input image for which to generate a caption. | |
Returns: | |
str: The generated caption text. | |
""" | |
output = get_completion(input) | |
return output[0]['generated_text'] | |
####### GRADIO APP ####### | |
title = """<h1 id="title"> Image Captioning with BLIP model </h1>""" | |
description = """ | |
- The model used for Generating Captions [BLIP-IMAGE-CAPTIONING-BASE](https://huggingface.co./Salesforce/blip-image-captioning-base). | |
""" | |
css = ''' | |
h1#title { | |
text-align: center; | |
} | |
''' | |
theme = gr.themes.Soft() | |
demo = gr.Blocks(css=css, theme=theme) | |
with demo: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
interface = gr.Interface(fn=captioner, | |
inputs=[gr.Image(label="Upload image", type="pil")], | |
outputs=[gr.Textbox(label="Caption")], | |
allow_flagging="never") | |
demo.launch() |