Spaces:
Sleeping
Sleeping
File size: 1,258 Bytes
6d66457 cef44ac 6d66457 cef44ac 6d66457 cef44ac 6d66457 cef44ac 6d66457 46df390 6d66457 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import gradio as gr
from PIL import Image
import spaces
from transformers import pipeline
# Initialize Model
get_completion = pipeline("image-to-text",model="Salesforce/blip-image-captioning-base", device=0)
@spaces.GPU(duration=120)
def captioner(input: Image.Image) -> str:
"""
Generate a caption for the given image using the BLIP-IMAGE-CAPTIONING-BASE model.
Args:
input (Image.Image): The input image for which to generate a caption.
Returns:
str: The generated caption text.
"""
output = get_completion(input)
return output[0]['generated_text']
####### GRADIO APP #######
title = """<h1 id="title"> Image Captioning with BLIP model </h1>"""
description = """
- The model used for Generating Captions [BLIP-IMAGE-CAPTIONING-BASE](https://huggingface.co./Salesforce/blip-image-captioning-base).
"""
css = '''
h1#title {
text-align: center;
}
'''
theme = gr.themes.Soft()
demo = gr.Blocks(css=css, theme=theme)
with demo:
gr.Markdown(title)
gr.Markdown(description)
interface = gr.Interface(fn=captioner,
inputs=[gr.Image(label="Upload image", type="pil")],
outputs=[gr.Textbox(label="Caption")],
allow_flagging="never")
demo.launch() |