arabellastrange's picture
removed zenrows params + updated google question prompt
9d67042
import logging
import os
from time import asctime
import gradio as gr
from llama_index.core import Document, VectorStoreIndex
from generate_response import generate_chat_response_with_history, set_llm, is_search_query, google_question, \
generate_chat_response_with_history_rag_return_response
from read_write_index import read_write_index
from web_search import search
API_KEY_PATH = "../keys/gpt_api_key.txt"
logger = logging.getLogger("agent_logger")
mush_sources = ("1. https://en.wikipedia.org/wiki/Mushroom_poisoning \n"
"2. https://thehomesteadtraveler.com/foraging-for-mushrooms-in-italy/ \n"
"3. https://funghimagazine.it/mushroom-hunting-in-italy/")
email_sources = (
"1. https://support.microsoft.com/en-us/office/advanced-outlook-com-security-for-microsoft-365-subscribers-882d2243-eab9-4545-a58a-b36fee4a46e2"
"\n 2. https://support.microsoft.com/en-us/office/security-and-privacy-in-outlook-web-app-727a553e-5502-4899-b1ea-c84a9ddde2af"
"\n 3. https://support.microsoft.com/en-us/office/delay-or-schedule-sending-email-messages-in-outlook-026af69f-c287-490a-a72f-6c65793744ba"
"\n 4. https://www.paubox.com/blog/scheduling-emails-and-hipaa-compliance")
cake_sources = ("1. https://www.indianhealthyrecipes.com/eggless-carrot-cake/"
"\n 2. https://www.pccmarkets.com/taste/2013-03/egg_substitutes/"
"\n 3. https://www.healthdirect.gov.au/nut-allergies")
art_sources = ("1. https://en.wikipedia.org/wiki/Post-Impressionism"
"\n 2. https://www.metmuseum.org/toah/hd/poim/hd_poim.htm"
"\n 3. https://www.britannica.com/art/Post-Impressionism"
"\n 4. https://www.theartstory.org/movement/post-impressionism/")
def google_search_chat(message, history):
gquestion = google_question(message, history)
if is_search_query(gquestion):
search_results = search(message, gquestion)
print(f'Search results returned: {len(search_results)}')
relevant_content = ""
sources = ""
for index, result in enumerate(search_results):
relevant_content = relevant_content + "\n" + ''.join(result['text'])
sources = sources + f'\n {index + 1}. ' + result['url'] # python is zero-indexed
if relevant_content != "":
documents = [Document(text=relevant_content)]
index = VectorStoreIndex.from_documents(documents)
print('Search results vectorized...')
response = generate_chat_response_with_history_rag_return_response(index, message, history)
else:
print(f'Assistant Response: Sorry, no search results found, trying offline backup...')
index = read_write_index(path='storage_search/')
response = generate_chat_response_with_history_rag_return_response(index, message, history)
if "mushroom" in message.lower() or "poison" in message.lower() or "italy" in message.lower():
sources = mush_sources
elif "email" in message.lower() or "data" in message.lower() or "gdpr" in message.lower():
sources = email_sources
elif "cake" in message.lower() or "egg" in message.lower() or "nut" in message.lower():
sources = cake_sources
elif "art" in message.lower() or "post-impressionism" in message.lower() or "postimpressionism" in message.lower():
sources = art_sources
else:
sources = "No sources available for this response."
response_text = []
string_output = ""
for text in response.response_gen:
response_text.append(text)
string_output = ''.join(response_text)
yield string_output
yield string_output + f'\n\n --- \n **Sources used:** \n {sources}'
print(f'Assistant Response: {string_output}')
else:
yield from generate_chat_response_with_history(message, history)
if __name__ == '__main__':
logging.root.setLevel(logging.INFO)
filehandler = logging.FileHandler(f'agent_log_{asctime().replace(" ", "").lower().replace(":", "")}.log',
'a')
formatter = logging.Formatter('%(asctime)-15s::%(levelname)s::%(filename)s::%(funcName)s::%(lineno)d::%(message)s')
filehandler.setFormatter(formatter)
logger = logging.getLogger("agent_logger")
for hdlr in logger.handlers[:]: # remove the existing file handlers
if isinstance(hdlr, logging.FileHandler):
logger.removeHandler(hdlr)
logger.addHandler(filehandler) # set the new handler
logger.setLevel(logging.INFO)
api_key = os.getenv('gpt_api_key')
# GPT - 4 Turbo. The latest GPT - 4 model intended to reduce cases of “laziness” where the model doesn’t complete
# a task. Returns a maximum of 4,096 output tokens. Link:
# https://openai.com/blog/new-embedding-models-and-api-updates
set_llm(key=api_key, model="gpt-4-0125-preview", temperature=0)
print("Launching Gradio ChatInterface for searchbot_sourced...")
demo = gr.ChatInterface(fn=google_search_chat,
title="Search Assistant", retry_btn=None, undo_btn=None, clear_btn=None,
theme="soft")
demo.launch()
# auth=('convo', 'session2024')