import logging import os from time import asctime import gradio as gr from llama_index.core import Document, VectorStoreIndex from generate_response import generate_chat_response_with_history, set_llm, is_search_query, google_question, \ generate_chat_response_with_history_rag_return_response from read_write_index import read_write_index from web_search import search API_KEY_PATH = "../keys/gpt_api_key.txt" logger = logging.getLogger("agent_logger") mush_sources = ("1. https://en.wikipedia.org/wiki/Mushroom_poisoning \n" "2. https://thehomesteadtraveler.com/foraging-for-mushrooms-in-italy/ \n" "3. https://funghimagazine.it/mushroom-hunting-in-italy/") email_sources = ( "1. https://support.microsoft.com/en-us/office/advanced-outlook-com-security-for-microsoft-365-subscribers-882d2243-eab9-4545-a58a-b36fee4a46e2" "\n 2. https://support.microsoft.com/en-us/office/security-and-privacy-in-outlook-web-app-727a553e-5502-4899-b1ea-c84a9ddde2af" "\n 3. https://support.microsoft.com/en-us/office/delay-or-schedule-sending-email-messages-in-outlook-026af69f-c287-490a-a72f-6c65793744ba" "\n 4. https://www.paubox.com/blog/scheduling-emails-and-hipaa-compliance") cake_sources = ("1. https://www.indianhealthyrecipes.com/eggless-carrot-cake/" "\n 2. https://www.pccmarkets.com/taste/2013-03/egg_substitutes/" "\n 3. https://www.healthdirect.gov.au/nut-allergies") art_sources = ("1. https://en.wikipedia.org/wiki/Post-Impressionism" "\n 2. https://www.metmuseum.org/toah/hd/poim/hd_poim.htm" "\n 3. https://www.britannica.com/art/Post-Impressionism" "\n 4. https://www.theartstory.org/movement/post-impressionism/") def google_search_chat(message, history): gquestion = google_question(message, history) if is_search_query(gquestion): search_results = search(message, gquestion) print(f'Search results returned: {len(search_results)}') relevant_content = "" sources = "" for index, result in enumerate(search_results): relevant_content = relevant_content + "\n" + ''.join(result['text']) sources = sources + f'\n {index + 1}. ' + result['url'] # python is zero-indexed if relevant_content != "": documents = [Document(text=relevant_content)] index = VectorStoreIndex.from_documents(documents) print('Search results vectorized...') response = generate_chat_response_with_history_rag_return_response(index, message, history) else: print(f'Assistant Response: Sorry, no search results found, trying offline backup...') index = read_write_index(path='storage_search/') response = generate_chat_response_with_history_rag_return_response(index, message, history) if "mushroom" in message.lower() or "poison" in message.lower() or "italy" in message.lower(): sources = mush_sources elif "email" in message.lower() or "data" in message.lower() or "gdpr" in message.lower(): sources = email_sources elif "cake" in message.lower() or "egg" in message.lower() or "nut" in message.lower(): sources = cake_sources elif "art" in message.lower() or "post-impressionism" in message.lower() or "postimpressionism" in message.lower(): sources = art_sources else: sources = "No sources available for this response." response_text = [] string_output = "" for text in response.response_gen: response_text.append(text) string_output = ''.join(response_text) yield string_output yield string_output + f'\n\n --- \n **Sources used:** \n {sources}' print(f'Assistant Response: {string_output}') else: yield from generate_chat_response_with_history(message, history) if __name__ == '__main__': logging.root.setLevel(logging.INFO) filehandler = logging.FileHandler(f'agent_log_{asctime().replace(" ", "").lower().replace(":", "")}.log', 'a') formatter = logging.Formatter('%(asctime)-15s::%(levelname)s::%(filename)s::%(funcName)s::%(lineno)d::%(message)s') filehandler.setFormatter(formatter) logger = logging.getLogger("agent_logger") for hdlr in logger.handlers[:]: # remove the existing file handlers if isinstance(hdlr, logging.FileHandler): logger.removeHandler(hdlr) logger.addHandler(filehandler) # set the new handler logger.setLevel(logging.INFO) api_key = os.getenv('gpt_api_key') # GPT - 4 Turbo. The latest GPT - 4 model intended to reduce cases of “laziness” where the model doesn’t complete # a task. Returns a maximum of 4,096 output tokens. Link: # https://openai.com/blog/new-embedding-models-and-api-updates set_llm(key=api_key, model="gpt-4-0125-preview", temperature=0) print("Launching Gradio ChatInterface for searchbot_sourced...") demo = gr.ChatInterface(fn=google_search_chat, title="Search Assistant", retry_btn=None, undo_btn=None, clear_btn=None, theme="soft") demo.launch() # auth=('convo', 'session2024')