Spaces:
Running
Running
import torch | |
from PIL import Image | |
from RealESRGAN import RealESRGAN | |
import gradio as gr | |
import os | |
import spaces | |
# Kiểm tra và cấu hình GPU | |
if torch.cuda.is_available(): | |
print(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}") | |
device = torch.device("cuda") | |
else: | |
print("CUDA is not available. Using CPU.") | |
device = torch.device("cpu") | |
# Lazy loading cho các mô hình | |
class LazyRealESRGAN: | |
def __init__(self, device, scale): | |
self.device = device | |
self.scale = scale | |
self.model = None | |
def load_model(self): | |
if self.model is None: | |
self.model = RealESRGAN(self.device, scale=self.scale) | |
self.model.load_weights(f'weights/RealESRGAN_x{self.scale}.pth', download=True) | |
def predict(self, img): | |
self.load_model() | |
return self.model.predict(img) | |
model2 = LazyRealESRGAN(device, scale=2) | |
model4 = LazyRealESRGAN(device, scale=4) | |
model8 = LazyRealESRGAN(device, scale=8) | |
# Hàm inference chính | |
def inference(image, size): | |
if image is None: | |
raise gr.Error("Image not uploaded") | |
try: | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
if size == '2x': | |
result = model2.predict(image.convert('RGB')) | |
elif size == '4x': | |
result = model4.predict(image.convert('RGB')) | |
else: | |
width, height = image.size | |
if width >= 5000 or height >= 5000: | |
raise gr.Error("The image is too large.") | |
result = model8.predict(image.convert('RGB')) | |
print(f"Image size ({device}): {size} ... OK") | |
return result | |
except torch.cuda.OutOfMemoryError: | |
raise gr.Error("GPU out of memory. Try a smaller image or lower upscaling factor.") | |
except Exception as e: | |
raise gr.Error(f"An error occurred: {str(e)}") | |
# Cấu hình giao diện Gradio | |
title = "Face Real ESRGAN UpScale: 2x 4x 8x" | |
description = "This is an unofficial demo for Real-ESRGAN. Scales the resolution of a photo. This model shows better results on faces compared to the original version.<br>Telegram BOT: https://t.me/restoration_photo_bot" | |
article = "<div style='text-align: center;'>Twitter <a href='https://twitter.com/DoEvent' target='_blank'>Max Skobeev</a> | <a href='https://huggingface.co./sberbank-ai/Real-ESRGAN' target='_blank'>Model card</a><div>" | |
# Khởi tạo và chạy giao diện Gradio | |
iface = gr.Interface( | |
inference, | |
[ | |
gr.Image(type="pil"), | |
gr.Radio(["2x", "4x", "8x"], type="value", value="2x", label="Resolution model") | |
], | |
gr.Image(type="pil", label="Output"), | |
title=title, | |
description=description, | |
article=article, | |
examples=[["groot.jpeg", "2x"]], | |
flagging_mode="never", | |
cache_examples=True | |
) | |
# Chạy ứng dụng | |
if __name__ == "__main__": | |
iface.launch(debug=True, show_error=True) |