anthienlong's picture
Update app.py
50ea707 verified
raw
history blame
2.91 kB
import torch
from PIL import Image
from RealESRGAN import RealESRGAN
import gradio as gr
import os
import spaces
# Kiểm tra và cấu hình GPU
if torch.cuda.is_available():
print(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}")
device = torch.device("cuda")
else:
print("CUDA is not available. Using CPU.")
device = torch.device("cpu")
# Lazy loading cho các mô hình
class LazyRealESRGAN:
def __init__(self, device, scale):
self.device = device
self.scale = scale
self.model = None
def load_model(self):
if self.model is None:
self.model = RealESRGAN(self.device, scale=self.scale)
self.model.load_weights(f'weights/RealESRGAN_x{self.scale}.pth', download=True)
def predict(self, img):
self.load_model()
return self.model.predict(img)
model2 = LazyRealESRGAN(device, scale=2)
model4 = LazyRealESRGAN(device, scale=4)
model8 = LazyRealESRGAN(device, scale=8)
# Hàm inference chính
@spaces.GPU
def inference(image, size):
if image is None:
raise gr.Error("Image not uploaded")
try:
if torch.cuda.is_available():
torch.cuda.empty_cache()
if size == '2x':
result = model2.predict(image.convert('RGB'))
elif size == '4x':
result = model4.predict(image.convert('RGB'))
else:
width, height = image.size
if width >= 5000 or height >= 5000:
raise gr.Error("The image is too large.")
result = model8.predict(image.convert('RGB'))
print(f"Image size ({device}): {size} ... OK")
return result
except torch.cuda.OutOfMemoryError:
raise gr.Error("GPU out of memory. Try a smaller image or lower upscaling factor.")
except Exception as e:
raise gr.Error(f"An error occurred: {str(e)}")
# Cấu hình giao diện Gradio
title = "Face Real ESRGAN UpScale: 2x 4x 8x"
description = "This is an unofficial demo for Real-ESRGAN. Scales the resolution of a photo. This model shows better results on faces compared to the original version.<br>Telegram BOT: https://t.me/restoration_photo_bot"
article = "<div style='text-align: center;'>Twitter <a href='https://twitter.com/DoEvent' target='_blank'>Max Skobeev</a> | <a href='https://huggingface.co./sberbank-ai/Real-ESRGAN' target='_blank'>Model card</a><div>"
# Khởi tạo và chạy giao diện Gradio
iface = gr.Interface(
inference,
[
gr.Image(type="pil"),
gr.Radio(["2x", "4x", "8x"], type="value", value="2x", label="Resolution model")
],
gr.Image(type="pil", label="Output"),
title=title,
description=description,
article=article,
examples=[["groot.jpeg", "2x"]],
flagging_mode="never",
cache_examples=True
)
# Chạy ứng dụng
if __name__ == "__main__":
iface.launch(debug=True, show_error=True)