Spaces:
Running
Running
anthienlong
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -2,77 +2,85 @@ import torch
|
|
2 |
from PIL import Image
|
3 |
from RealESRGAN import RealESRGAN
|
4 |
import gradio as gr
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def inference(image, size):
|
16 |
-
global model2
|
17 |
-
global model4
|
18 |
-
global model8
|
19 |
if image is None:
|
20 |
raise gr.Error("Image not uploaded")
|
21 |
-
|
22 |
|
23 |
-
|
24 |
-
torch.cuda.
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
result = model2.predict(image.convert('RGB'))
|
29 |
-
except torch.cuda.OutOfMemoryError as e:
|
30 |
-
print(e)
|
31 |
-
model2 = RealESRGAN(device, scale=2)
|
32 |
-
model2.load_weights('weights/RealESRGAN_x2.pth', download=False)
|
33 |
result = model2.predict(image.convert('RGB'))
|
34 |
-
|
35 |
-
try:
|
36 |
result = model4.predict(image.convert('RGB'))
|
37 |
-
|
38 |
-
print(e)
|
39 |
-
model4 = RealESRGAN(device, scale=4)
|
40 |
-
model4.load_weights('weights/RealESRGAN_x4.pth', download=False)
|
41 |
-
result = model2.predict(image.convert('RGB'))
|
42 |
-
else:
|
43 |
-
try:
|
44 |
width, height = image.size
|
45 |
if width >= 5000 or height >= 5000:
|
46 |
raise gr.Error("The image is too large.")
|
47 |
result = model8.predict(image.convert('RGB'))
|
48 |
-
except torch.cuda.OutOfMemoryError as e:
|
49 |
-
print(e)
|
50 |
-
model8 = RealESRGAN(device, scale=8)
|
51 |
-
model8.load_weights('weights/RealESRGAN_x8.pth', download=False)
|
52 |
-
result = model2.predict(image.convert('RGB'))
|
53 |
-
|
54 |
-
print(f"Image size ({device}): {size} ... OK")
|
55 |
-
return result
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
|
|
58 |
title = "Face Real ESRGAN UpScale: 2x 4x 8x"
|
59 |
description = "This is an unofficial demo for Real-ESRGAN. Scales the resolution of a photo. This model shows better results on faces compared to the original version.<br>Telegram BOT: https://t.me/restoration_photo_bot"
|
60 |
article = "<div style='text-align: center;'>Twitter <a href='https://twitter.com/DoEvent' target='_blank'>Max Skobeev</a> | <a href='https://huggingface.co/sberbank-ai/Real-ESRGAN' target='_blank'>Model card</a><div>"
|
61 |
|
62 |
-
|
63 |
-
gr.Interface(
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
gr.Image(type="pil", label="Output"),
|
70 |
title=title,
|
71 |
description=description,
|
72 |
article=article,
|
73 |
examples=[["groot.jpeg", "2x"]],
|
74 |
flagging_mode="never",
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
2 |
from PIL import Image
|
3 |
from RealESRGAN import RealESRGAN
|
4 |
import gradio as gr
|
5 |
+
import os
|
6 |
+
import spaces
|
7 |
|
8 |
+
# Kiểm tra và cấu hình GPU
|
9 |
+
if torch.cuda.is_available():
|
10 |
+
print(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}")
|
11 |
+
device = torch.device("cuda")
|
12 |
+
else:
|
13 |
+
print("CUDA is not available. Using CPU.")
|
14 |
+
device = torch.device("cpu")
|
15 |
|
16 |
+
# Lazy loading cho các mô hình
|
17 |
+
class LazyRealESRGAN:
|
18 |
+
def __init__(self, device, scale):
|
19 |
+
self.device = device
|
20 |
+
self.scale = scale
|
21 |
+
self.model = None
|
22 |
|
23 |
+
def load_model(self):
|
24 |
+
if self.model is None:
|
25 |
+
self.model = RealESRGAN(self.device, scale=self.scale)
|
26 |
+
self.model.load_weights(f'weights/RealESRGAN_x{self.scale}.pth', download=True)
|
27 |
+
|
28 |
+
def predict(self, img):
|
29 |
+
self.load_model()
|
30 |
+
return self.model.predict(img)
|
31 |
+
|
32 |
+
model2 = LazyRealESRGAN(device, scale=2)
|
33 |
+
model4 = LazyRealESRGAN(device, scale=4)
|
34 |
+
model8 = LazyRealESRGAN(device, scale=8)
|
35 |
+
|
36 |
+
# Hàm inference chính
|
37 |
+
@spaces.GPU
|
38 |
def inference(image, size):
|
|
|
|
|
|
|
39 |
if image is None:
|
40 |
raise gr.Error("Image not uploaded")
|
|
|
41 |
|
42 |
+
try:
|
43 |
+
if torch.cuda.is_available():
|
44 |
+
torch.cuda.empty_cache()
|
45 |
+
|
46 |
+
if size == '2x':
|
|
|
|
|
|
|
|
|
|
|
47 |
result = model2.predict(image.convert('RGB'))
|
48 |
+
elif size == '4x':
|
|
|
49 |
result = model4.predict(image.convert('RGB'))
|
50 |
+
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
width, height = image.size
|
52 |
if width >= 5000 or height >= 5000:
|
53 |
raise gr.Error("The image is too large.")
|
54 |
result = model8.predict(image.convert('RGB'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
print(f"Image size ({device}): {size} ... OK")
|
57 |
+
return result
|
58 |
+
except torch.cuda.OutOfMemoryError:
|
59 |
+
raise gr.Error("GPU out of memory. Try a smaller image or lower upscaling factor.")
|
60 |
+
except Exception as e:
|
61 |
+
raise gr.Error(f"An error occurred: {str(e)}")
|
62 |
|
63 |
+
# Cấu hình giao diện Gradio
|
64 |
title = "Face Real ESRGAN UpScale: 2x 4x 8x"
|
65 |
description = "This is an unofficial demo for Real-ESRGAN. Scales the resolution of a photo. This model shows better results on faces compared to the original version.<br>Telegram BOT: https://t.me/restoration_photo_bot"
|
66 |
article = "<div style='text-align: center;'>Twitter <a href='https://twitter.com/DoEvent' target='_blank'>Max Skobeev</a> | <a href='https://huggingface.co/sberbank-ai/Real-ESRGAN' target='_blank'>Model card</a><div>"
|
67 |
|
68 |
+
# Khởi tạo và chạy giao diện Gradio
|
69 |
+
iface = gr.Interface(
|
70 |
+
inference,
|
71 |
+
[
|
72 |
+
gr.Image(type="pil"),
|
73 |
+
gr.Radio(["2x", "4x", "8x"], type="value", value="2x", label="Resolution model")
|
74 |
+
],
|
75 |
gr.Image(type="pil", label="Output"),
|
76 |
title=title,
|
77 |
description=description,
|
78 |
article=article,
|
79 |
examples=[["groot.jpeg", "2x"]],
|
80 |
flagging_mode="never",
|
81 |
+
cache_examples=True
|
82 |
+
)
|
83 |
+
|
84 |
+
# Chạy ứng dụng
|
85 |
+
if __name__ == "__main__":
|
86 |
+
iface.launch(debug=True, show_error=True)
|