Spaces:
Running
on
Zero
A newer version of the Gradio SDK is available:
5.13.1
Amphion GAN-based Vocoder Recipe
Supported Model Architectures
GAN-based Vocoder consists of a generator and multiple discriminators, as illustrated below:
Until now, Amphion GAN-based Vocoder has supported the following generators and discriminators.
- Generators
- Discriminators
You can use any vocoder architecture with any dataset you want. There are four steps in total:
- Data preparation
- Feature extraction
- Training
- Inference
NOTE: You need to run every command of this recipe in the
Amphion
root path:
cd Amphion
1. Data Preparation
You can train the vocoder with any datasets. Amphion's supported open-source datasets are detailed here.
Configuration
Specify the dataset path in exp_config_base.json
. Note that you can change the dataset
list to use your preferred datasets.
"dataset": [
"csd",
"kising",
"m4singer",
"nus48e",
"opencpop",
"opensinger",
"opera",
"pjs",
"popbutfy",
"popcs",
"ljspeech",
"vctk",
"libritts",
],
"dataset_path": {
// TODO: Fill in your dataset path
"csd": "[dataset path]",
"kising": "[dataset path]",
"m4singer": "[dataset path]",
"nus48e": "[dataset path]",
"opencpop": "[dataset path]",
"opensinger": "[dataset path]",
"opera": "[dataset path]",
"pjs": "[dataset path]",
"popbutfy": "[dataset path]",
"popcs": "[dataset path]",
"ljspeech": "[dataset path]",
"vctk": "[dataset path]",
"libritts": "[dataset path]",
},
2. Feature Extraction
The needed features are speficied in the individual vocoder direction so it doesn't require any modification.
Configuration
Specify the dataset path and the output path for saving the processed data and the training model in exp_config_base.json
:
// TODO: Fill in the output log path. The default value is "Amphion/ckpts/vocoder"
"log_dir": "ckpts/vocoder",
"preprocess": {
// TODO: Fill in the output data path. The default value is "Amphion/data"
"processed_dir": "data",
...
},
Run
Run the run.sh
as the preproces stage (set --stage 1
).
sh egs/vocoder/gan/{vocoder_name}/run.sh --stage 1
NOTE: The
CUDA_VISIBLE_DEVICES
is set as"0"
in default. You can change it when runningrun.sh
by specifying such as--gpu "1"
.
3. Training
Configuration
We provide the default hyparameters in the exp_config_base.json
. They can work on single NVIDIA-24g GPU. You can adjust them based on you GPU machines.
"train": {
"batch_size": 32,
"max_epoch": 1000000,
"save_checkpoint_stride": [20],
"adamw": {
"lr": 2.0e-4,
"adam_b1": 0.8,
"adam_b2": 0.99
},
"exponential_lr": {
"lr_decay": 0.999
},
}
You can also choose any amount of prefered discriminators for training in the exp_config_base.json
.
"discriminators": [
"msd",
"mpd",
"msstftd",
"mssbcqtd",
],
Run
Run the run.sh
as the training stage (set --stage 2
). Specify a experimental name to run the following command. The tensorboard logs and checkpoints will be saved in Amphion/ckpts/vocoder/[YourExptName]
.
sh egs/vocoder/gan/{vocoder_name}/run.sh --stage 2 --name [YourExptName]
NOTE: The
CUDA_VISIBLE_DEVICES
is set as"0"
in default. You can change it when runningrun.sh
by specifying such as--gpu "0,1,2,3"
.
If you want to resume or finetune from a pretrained model, run:
sh egs/vocoder/gan/{vocoder_name}/run.sh --stage 2 \
--name [YourExptName] \
--resume_type ["resume" for resuming training and "finetune" for loading parameters only] \
--checkpoint Amphion/ckpts/vocoder/[YourExptName]/checkpoint \
NOTE: For multi-gpu training, the
main_process_port
is set as29500
in default. You can change it when runningrun.sh
by specifying such as--main_process_port 29501
.
4. Inference
Run
Run the run.sh
as the training stage (set --stage 3
), we provide three different inference modes, including infer_from_dataset
, infer_from_feature
, and infer_from_audio
.
sh egs/vocoder/gan/{vocoder_name}/run.sh --stage 3 \
--infer_mode [Your chosen inference mode] \
--infer_datasets [Datasets you want to inference, needed when infer_from_dataset] \
--infer_feature_dir [Your path to your predicted acoustic features, needed when infer_from_feature] \
--infer_audio_dir [Your path to your audio files, needed when infer_form_audio] \
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \
a. Inference from Dataset
Run the run.sh
with specified datasets, here is an example.
sh egs/vocoder/gan/{vocoder_name}/run.sh --stage 3 \
--infer_mode infer_from_dataset \
--infer_datasets "libritts vctk ljspeech" \
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \
b. Inference from Features
If you want to inference from your generated acoustic features, you should first prepare your acoustic features into the following structure:
β£ {infer_feature_dir}
β β£ mels
β β β£ sample1.npy
β β β£ sample2.npy
β β£ f0s (required if you use NSF-HiFiGAN)
β β β£ sample1.npy
β β β£ sample2.npy
Then run the run.sh
with specificed folder direction, here is an example.
sh egs/vocoder/gan/{vocoder_name}/run.sh --stage 3 \
--infer_mode infer_from_feature \
--infer_feature_dir [Your path to your predicted acoustic features] \
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \
c. Inference from Audios
If you want to inference from audios for quick analysis synthesis, you should first prepare your audios into the following structure:
β£ audios
β β£ sample1.wav
β β£ sample2.wav
Then run the run.sh
with specificed folder direction, here is an example.
sh egs/vocoder/gan/{vocoder_name}/run.sh --stage 3 \
--infer_mode infer_from_audio \
--infer_audio_dir [Your path to your audio files] \
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \