Spaces:
Running
on
Zero
Running
on
Zero
# Multi-Scale Sub-Band Constant-Q Transform Discriminator for High-Fedility Vocoder | |
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2311.14957) | |
[![demo](https://img.shields.io/badge/Vocoder-Demo-red)](https://vocodexelysium.github.io/MS-SB-CQTD/) | |
[![hf](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Models-pink)](https://huggingface.co./amphion/hifigan_speech_bigdata) | |
<br> | |
<div align="center"> | |
<img src="../../../../imgs/vocoder/gan/MSSBCQTD.png" width="80%"> | |
</div> | |
<br> | |
This is the official implementation of the paper "[Multi-Scale Sub-Band Constant-Q Transform Discriminator for High-Fidelity Vocoder](https://arxiv.org/abs/2311.14957)". In this recipe, we will illustrate how to train a high quality HiFi-GAN on LibriTTS, VCTK and LJSpeech via utilizing multiple Time-Frequency-Representation-based Discriminators. | |
There are four stages in total: | |
1. Data preparation | |
2. Feature extraction | |
3. Training | |
4. Inference | |
> **NOTE:** You need to run every command of this recipe in the `Amphion` root path: | |
> ```bash | |
> cd Amphion | |
> ``` | |
## 1. Data Preparation | |
### Dataset Download | |
By default, we utilize the three datasets for training: LibriTTS, VCTK and LJSpeech. How to download them is detailed in [here](../../../datasets/README.md). | |
### Configuration | |
Specify the dataset path in `exp_config.json`. Note that you can change the `dataset` list to use your preferred datasets. | |
```json | |
"dataset": [ | |
"ljspeech", | |
"vctk", | |
"libritts", | |
], | |
"dataset_path": { | |
// TODO: Fill in your dataset path | |
"ljspeech": "[LJSpeech dataset path]", | |
"vctk": "[VCTK dataset path]", | |
"libritts": "[LibriTTS dataset path]", | |
}, | |
``` | |
## 2. Features Extraction | |
For HiFiGAN, only the Mel-Spectrogram and the Output Audio are needed for training. | |
### Configuration | |
Specify the dataset path and the output path for saving the processed data and the training model in `exp_config.json`: | |
```json | |
// TODO: Fill in the output log path. The default value is "Amphion/ckpts/vocoder" | |
"log_dir": "ckpts/vocoder", | |
"preprocess": { | |
// TODO: Fill in the output data path. The default value is "Amphion/data" | |
"processed_dir": "data", | |
... | |
}, | |
``` | |
### Run | |
Run the `run.sh` as the preproces stage (set `--stage 1`). | |
```bash | |
sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 1 | |
``` | |
> **NOTE:** The `CUDA_VISIBLE_DEVICES` is set as `"0"` in default. You can change it when running `run.sh` by specifying such as `--gpu "1"`. | |
## 3. Training | |
### Configuration | |
We provide the default hyparameters in the `exp_config.json`. They can work on single NVIDIA-24g GPU. You can adjust them based on you GPU machines. | |
```json | |
"train": { | |
"batch_size": 32, | |
... | |
} | |
``` | |
### Run | |
Run the `run.sh` as the training stage (set `--stage 2`). Specify a experimental name to run the following command. The tensorboard logs and checkpoints will be saved in `Amphion/ckpts/vocoder/[YourExptName]`. | |
```bash | |
sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 2 --name [YourExptName] | |
``` | |
> **NOTE:** The `CUDA_VISIBLE_DEVICES` is set as `"0"` in default. You can change it when running `run.sh` by specifying such as `--gpu "0,1,2,3"`. | |
If you want to resume or finetune from a pretrained model, run: | |
```bash | |
sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 2 \ | |
--name [YourExptName] \ | |
--resume_type ["resume" for resuming training and "finetune" for loading parameters only] \ | |
--checkpoint Amphion/ckpts/vocoder/[YourExptName]/checkpoint \ | |
``` | |
> **NOTE:** For multi-gpu training, the `main_process_port` is set as `29500` in default. You can change it when running `run.sh` by specifying such as `--main_process_port 29501`. | |
## 4. Inference | |
### Pretrained Vocoder Download | |
We trained a HiFiGAN checkpoint with around 685 hours Speech data. The final pretrained checkpoint is released [here](../../../../pretrained/hifigan/README.md). | |
### Run | |
Run the `run.sh` as the training stage (set `--stage 3`), we provide three different inference modes, including `infer_from_dataset`, `infer_from_feature`, `and infer_from audio`. | |
```bash | |
sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 3 \ | |
--infer_mode [Your chosen inference mode] \ | |
--infer_datasets [Datasets you want to inference, needed when infer_from_dataset] \ | |
--infer_feature_dir [Your path to your predicted acoustic features, needed when infer_from_feature] \ | |
--infer_audio_dir [Your path to your audio files, needed when infer_form_audio] \ | |
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \ | |
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \ | |
``` | |
#### a. Inference from Dataset | |
Run the `run.sh` with specified datasets, here is an example. | |
```bash | |
sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 3 \ | |
--infer_mode infer_from_dataset \ | |
--infer_datasets "libritts vctk ljspeech" \ | |
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \ | |
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \ | |
``` | |
#### b. Inference from Features | |
If you want to inference from your generated acoustic features, you should first prepare your acoustic features into the following structure: | |
```plaintext | |
β£ {infer_feature_dir} | |
β β£ mels | |
β β β£ sample1.npy | |
β β β£ sample2.npy | |
``` | |
Then run the `run.sh` with specificed folder direction, here is an example. | |
```bash | |
sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 3 \ | |
--infer_mode infer_from_feature \ | |
--infer_feature_dir [Your path to your predicted acoustic features] \ | |
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \ | |
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \ | |
``` | |
#### c. Inference from Audios | |
If you want to inference from audios for quick analysis synthesis, you should first prepare your audios into the following structure: | |
```plaintext | |
β£ audios | |
β β£ sample1.wav | |
β β£ sample2.wav | |
``` | |
Then run the `run.sh` with specificed folder direction, here is an example. | |
```bash | |
sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 3 \ | |
--infer_mode infer_from_audio \ | |
--infer_audio_dir [Your path to your audio files] \ | |
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \ | |
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \ | |
``` | |
## Citations | |
```bibtex | |
@misc{gu2023cqt, | |
title={Multi-Scale Sub-Band Constant-Q Transform Discriminator for High-Fidelity Vocoder}, | |
author={Yicheng Gu and Xueyao Zhang and Liumeng Xue and Zhizheng Wu}, | |
year={2023}, | |
eprint={2311.14957}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.SD} | |
} | |
``` |