Hecheng0625's picture
Upload 167 files
8c92a11 verified
|
raw
history blame
6.58 kB
# Multi-Scale Sub-Band Constant-Q Transform Discriminator for High-Fedility Vocoder
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2311.14957)
[![demo](https://img.shields.io/badge/Vocoder-Demo-red)](https://vocodexelysium.github.io/MS-SB-CQTD/)
[![hf](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Models-pink)](https://huggingface.co./amphion/hifigan_speech_bigdata)
<br>
<div align="center">
<img src="../../../../imgs/vocoder/gan/MSSBCQTD.png" width="80%">
</div>
<br>
This is the official implementation of the paper "[Multi-Scale Sub-Band Constant-Q Transform Discriminator for High-Fidelity Vocoder](https://arxiv.org/abs/2311.14957)". In this recipe, we will illustrate how to train a high quality HiFi-GAN on LibriTTS, VCTK and LJSpeech via utilizing multiple Time-Frequency-Representation-based Discriminators.
There are four stages in total:
1. Data preparation
2. Feature extraction
3. Training
4. Inference
> **NOTE:** You need to run every command of this recipe in the `Amphion` root path:
> ```bash
> cd Amphion
> ```
## 1. Data Preparation
### Dataset Download
By default, we utilize the three datasets for training: LibriTTS, VCTK and LJSpeech. How to download them is detailed in [here](../../../datasets/README.md).
### Configuration
Specify the dataset path in `exp_config.json`. Note that you can change the `dataset` list to use your preferred datasets.
```json
"dataset": [
"ljspeech",
"vctk",
"libritts",
],
"dataset_path": {
// TODO: Fill in your dataset path
"ljspeech": "[LJSpeech dataset path]",
"vctk": "[VCTK dataset path]",
"libritts": "[LibriTTS dataset path]",
},
```
## 2. Features Extraction
For HiFiGAN, only the Mel-Spectrogram and the Output Audio are needed for training.
### Configuration
Specify the dataset path and the output path for saving the processed data and the training model in `exp_config.json`:
```json
// TODO: Fill in the output log path. The default value is "Amphion/ckpts/vocoder"
"log_dir": "ckpts/vocoder",
"preprocess": {
// TODO: Fill in the output data path. The default value is "Amphion/data"
"processed_dir": "data",
...
},
```
### Run
Run the `run.sh` as the preproces stage (set `--stage 1`).
```bash
sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 1
```
> **NOTE:** The `CUDA_VISIBLE_DEVICES` is set as `"0"` in default. You can change it when running `run.sh` by specifying such as `--gpu "1"`.
## 3. Training
### Configuration
We provide the default hyparameters in the `exp_config.json`. They can work on single NVIDIA-24g GPU. You can adjust them based on you GPU machines.
```json
"train": {
"batch_size": 32,
...
}
```
### Run
Run the `run.sh` as the training stage (set `--stage 2`). Specify a experimental name to run the following command. The tensorboard logs and checkpoints will be saved in `Amphion/ckpts/vocoder/[YourExptName]`.
```bash
sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 2 --name [YourExptName]
```
> **NOTE:** The `CUDA_VISIBLE_DEVICES` is set as `"0"` in default. You can change it when running `run.sh` by specifying such as `--gpu "0,1,2,3"`.
If you want to resume or finetune from a pretrained model, run:
```bash
sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 2 \
--name [YourExptName] \
--resume_type ["resume" for resuming training and "finetune" for loading parameters only] \
--checkpoint Amphion/ckpts/vocoder/[YourExptName]/checkpoint \
```
> **NOTE:** For multi-gpu training, the `main_process_port` is set as `29500` in default. You can change it when running `run.sh` by specifying such as `--main_process_port 29501`.
## 4. Inference
### Pretrained Vocoder Download
We trained a HiFiGAN checkpoint with around 685 hours Speech data. The final pretrained checkpoint is released [here](../../../../pretrained/hifigan/README.md).
### Run
Run the `run.sh` as the training stage (set `--stage 3`), we provide three different inference modes, including `infer_from_dataset`, `infer_from_feature`, `and infer_from audio`.
```bash
sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 3 \
--infer_mode [Your chosen inference mode] \
--infer_datasets [Datasets you want to inference, needed when infer_from_dataset] \
--infer_feature_dir [Your path to your predicted acoustic features, needed when infer_from_feature] \
--infer_audio_dir [Your path to your audio files, needed when infer_form_audio] \
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \
```
#### a. Inference from Dataset
Run the `run.sh` with specified datasets, here is an example.
```bash
sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 3 \
--infer_mode infer_from_dataset \
--infer_datasets "libritts vctk ljspeech" \
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \
```
#### b. Inference from Features
If you want to inference from your generated acoustic features, you should first prepare your acoustic features into the following structure:
```plaintext
┣ {infer_feature_dir}
┃ ┣ mels
┃ ┃ ┣ sample1.npy
┃ ┃ ┣ sample2.npy
```
Then run the `run.sh` with specificed folder direction, here is an example.
```bash
sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 3 \
--infer_mode infer_from_feature \
--infer_feature_dir [Your path to your predicted acoustic features] \
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \
```
#### c. Inference from Audios
If you want to inference from audios for quick analysis synthesis, you should first prepare your audios into the following structure:
```plaintext
┣ audios
┃ ┣ sample1.wav
┃ ┣ sample2.wav
```
Then run the `run.sh` with specificed folder direction, here is an example.
```bash
sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 3 \
--infer_mode infer_from_audio \
--infer_audio_dir [Your path to your audio files] \
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \
```
## Citations
```bibtex
@misc{gu2023cqt,
title={Multi-Scale Sub-Band Constant-Q Transform Discriminator for High-Fidelity Vocoder},
author={Yicheng Gu and Xueyao Zhang and Liumeng Xue and Zhizheng Wu},
year={2023},
eprint={2311.14957},
archivePrefix={arXiv},
primaryClass={cs.SD}
}
```