Spaces:
Running
Running
File size: 5,051 Bytes
dd78cef 63292fe 2652021 997e5d0 c18889e 69140ae a9d197e dd78cef 2652021 69140ae 997e5d0 69140ae a9d197e dd78cef 69140ae dd78cef 69140ae dd78cef 69140ae dd78cef 69140ae 96c54a2 4b3cc5a 997e5d0 f848200 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
from openvino.runtime import Core
import gradio as gr
import numpy as np
from PIL import Image
import cv2
from torchvision import models,transforms
from typing import Iterable
import gradio as gr
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
import time
core = Core()
# Read model to OpenVINO Runtime
model_ir = core.read_model(model="Davinci_eye.onnx")
compiled_model_ir = core.compile_model(model=model_ir, device_name='CPU')
tfms = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # imagenet
])
color_map={
(251,244,5): 1,
(37,250,5):2,
(0,21,209):3,
(172,21,2): 4,
(172,21,229): 5,
(6,254,249): 6,
(141,216,23):7,
(96,13,13):8,
(65,214,24):9,
(124,3,252):10,
(214,55,153):11,
(48,61,173):12,
(110,31,254):13,
(249,37,14):14,
(249,137,254):15,
(34,255,113):16,
(169,52,14):17,
(124,49,176):18,
(4,88,238):19,
(115,214,178):20,
(115,63,178):21,
(115,214,235):22,
(63,63,178): 23,
(130,34,26):24,
(220,158,161):25,
(201,117,56):26,
(121,16,40):27,
(15,126,0):28,
(0,50,70):29,
(20,20,0):30,
(20,20,0):31,
}
items = {
1: "HarmonicAce_Head",
2: "HarmonicAce_Body",
3: "MarylandBipolarForceps_Head",
4: "MarylandBipolarForceps_Wrist",
5: "MarylandBipolarForceps_Body",
6: "CadiereForceps_Head",
7: "CadiereForceps_Wrist",
8: "CadiereForceps_Body",
9: "CurvedAtraumaticGrasper_Head",
10: "CurvedAtraumaticGrasper_Body",
11: "Stapler_Head",
12: "Stapler_Body",
13: "MediumLargeClipApplier_Head",
14: "MediumLargeClipApplier_Wrist",
15: "MediumLargeClipApplier_Body",
16: "SmallClipApplier_Head",
17: "SmallClipApplier_Wrist",
18: "SmallClipApplier_Body",
19: "SuctionIrrigation",
20: "Needle",
21: "Endotip",
22: "Specimenbag",
23: "DrainTube",
24: "Liver",
25: "Stomach",
26: "Pancreas",
27: "Spleen",
28: "Gallbladder",
29:"Gauze",
30:"TheOther_Instruments",
31:"TheOther_Tissues",
}
class Davinci_Eye(Base):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.stone,
secondary_hue: colors.Color | str = colors.blue,
neutral_hue: colors.Color | str = colors.gray,
spacing_size: sizes.Size | str = sizes.spacing_md,
radius_size: sizes.Size | str = sizes.radius_md,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font
| str
| Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"),
"ui-sans-serif",
"sans-serif",
),
font_mono: fonts.Font
| str
| Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"),
"ui-monospace",
"monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
spacing_size=spacing_size,
radius_size=radius_size,
text_size=text_size,
font=font,
font_mono=font_mono,
)
davincieye = Davinci_Eye()
colormap={v:[i for i in k] for k,v in color_map.items()}
def convert_mask_to_rgb(pred_mask):
rgb_mask=np.zeros((pred_mask.shape[0],pred_mask.shape[1],3),dtype=np.uint8)
for k,v in colormap.items():
rgb_mask[pred_mask==k]=v
return rgb_mask
def segment_image(filepath):
image=cv2.imread(filepath)
image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (512,512))
x=tfms(image.copy())
#ort_input={ort_session.get_inputs()[0].name:x.cpu().unsqueeze(0).float().numpy()}
#out=ort_session.run(None,ort_input)
out = compiled_model_ir(x.unsqueeze(0).float().cpu().numpy())
pred_mask=np.squeeze(np.argmax(out[0],1)).astype(np.uint8)
color_mask=convert_mask_to_rgb(pred_mask)
masked_image=cv2.addWeighted(image,0.6,color_mask,0.4,0.1)
pred_keys=pred_mask[np.nonzero(pred_mask)]
objects=[items[k] for k in pred_keys]
surgery_items=np.unique(np.array(objects),axis=0)
surg=""
for item in surgery_items:
surg+=item+","+" "
return Image.fromarray(masked_image),surg
demo=gr.Interface(fn=segment_image,inputs=gr.Image(type='filepath'),
outputs=[gr.Image(type="pil"),gr.Text()],
examples=["R001_ch1_video_03_00-29-13-03.jpg",
"R002_ch1_video_01_01-07-25-19.jpg",
"R003_ch1_video_05_00-22-42-23.jpg",
"R004_ch1_video_01_01-12-22-00.jpg",
"R005_ch1_video_03_00-19-10-11.jpg",
"R006_ch1_video_01_00-45-02-10.jpg",
"R013_ch1_video_03_00-40-17-11.jpg"],
theme=davincieye.set(loader_color='#65aab1'),
title="Davinci Eye(Quantized for CPU)")
demo.launch() |