File size: 5,051 Bytes
dd78cef
 
 
 
63292fe
2652021
997e5d0
 
 
 
 
c18889e
 
 
69140ae
a9d197e
dd78cef
2652021
 
 
 
69140ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
997e5d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69140ae
 
 
 
 
 
 
 
 
 
a9d197e
dd78cef
 
 
 
69140ae
 
 
 
dd78cef
69140ae
dd78cef
69140ae
 
 
 
 
 
 
dd78cef
 
69140ae
96c54a2
 
4b3cc5a
 
 
 
 
997e5d0
f848200
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from openvino.runtime import Core
import gradio as gr 
import numpy as np 
from PIL import Image
import cv2
from torchvision import models,transforms
from typing import Iterable
import gradio as gr
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
import time
core = Core()

# Read model to OpenVINO Runtime
model_ir = core.read_model(model="Davinci_eye.onnx")
compiled_model_ir = core.compile_model(model=model_ir, device_name='CPU')

tfms = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # imagenet
])
color_map={
    (251,244,5): 1,
    (37,250,5):2, 
    (0,21,209):3, 
    (172,21,2): 4,
    (172,21,229): 5,
    (6,254,249): 6,
    (141,216,23):7,
    (96,13,13):8,
    (65,214,24):9,
    (124,3,252):10,
    (214,55,153):11,
    (48,61,173):12,
    (110,31,254):13,
    (249,37,14):14,
    (249,137,254):15,
    (34,255,113):16,
    (169,52,14):17,
    (124,49,176):18,
    (4,88,238):19,
    (115,214,178):20,
    (115,63,178):21,
    (115,214,235):22,
    (63,63,178): 23,
    (130,34,26):24,
    (220,158,161):25,
    (201,117,56):26,
    (121,16,40):27,
    (15,126,0):28,
    (0,50,70):29,
    (20,20,0):30,
    (20,20,0):31,
     }

items = {
    1: "HarmonicAce_Head",
    2: "HarmonicAce_Body",
    3: "MarylandBipolarForceps_Head",
    4: "MarylandBipolarForceps_Wrist",
    5: "MarylandBipolarForceps_Body",
    6: "CadiereForceps_Head",
    7: "CadiereForceps_Wrist",
    8: "CadiereForceps_Body",
    9: "CurvedAtraumaticGrasper_Head",
    10: "CurvedAtraumaticGrasper_Body",
    11: "Stapler_Head",
    12: "Stapler_Body",
    13: "MediumLargeClipApplier_Head",
    14: "MediumLargeClipApplier_Wrist",
    15: "MediumLargeClipApplier_Body",
    16: "SmallClipApplier_Head",
    17: "SmallClipApplier_Wrist",
    18: "SmallClipApplier_Body",
    19: "SuctionIrrigation",
    20: "Needle",
    21: "Endotip",
    22: "Specimenbag",
    23: "DrainTube",
    24: "Liver",
    25: "Stomach",
    26: "Pancreas",
    27: "Spleen",
    28: "Gallbladder",
    29:"Gauze",
    30:"TheOther_Instruments",
    31:"TheOther_Tissues",


}
class Davinci_Eye(Base):
    def __init__(
        self,
        *,
        primary_hue: colors.Color | str = colors.stone,
        secondary_hue: colors.Color | str = colors.blue,
        neutral_hue: colors.Color | str = colors.gray,
        spacing_size: sizes.Size | str = sizes.spacing_md,
        radius_size: sizes.Size | str = sizes.radius_md,
        text_size: sizes.Size | str = sizes.text_lg,
        font: fonts.Font
        | str
        | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("IBM Plex Mono"),
            "ui-sans-serif",
            "sans-serif",
        ),
        font_mono: fonts.Font
        | str
        | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("IBM Plex Mono"),
            "ui-monospace",
            "monospace",
        ),
    ):
        super().__init__(
            primary_hue=primary_hue,
            secondary_hue=secondary_hue,
            neutral_hue=neutral_hue,
            spacing_size=spacing_size,
            radius_size=radius_size,
            text_size=text_size,
            font=font,
            font_mono=font_mono,
        )


davincieye = Davinci_Eye()

colormap={v:[i for i in k] for k,v in color_map.items()}

def convert_mask_to_rgb(pred_mask):
    rgb_mask=np.zeros((pred_mask.shape[0],pred_mask.shape[1],3),dtype=np.uint8)
    for k,v in colormap.items():
        rgb_mask[pred_mask==k]=v
    return rgb_mask



def segment_image(filepath):
  image=cv2.imread(filepath)
  image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
  image = cv2.resize(image, (512,512))
  x=tfms(image.copy())
#ort_input={ort_session.get_inputs()[0].name:x.cpu().unsqueeze(0).float().numpy()}
#out=ort_session.run(None,ort_input)
  out = compiled_model_ir(x.unsqueeze(0).float().cpu().numpy())
  pred_mask=np.squeeze(np.argmax(out[0],1)).astype(np.uint8)
  color_mask=convert_mask_to_rgb(pred_mask)
  masked_image=cv2.addWeighted(image,0.6,color_mask,0.4,0.1)
  pred_keys=pred_mask[np.nonzero(pred_mask)]
  objects=[items[k] for k in pred_keys]
  surgery_items=np.unique(np.array(objects),axis=0)
  surg=""
  for item in surgery_items:
        surg+=item+","+" "
  return Image.fromarray(masked_image),surg

demo=gr.Interface(fn=segment_image,inputs=gr.Image(type='filepath'),
                  outputs=[gr.Image(type="pil"),gr.Text()],
                  examples=["R001_ch1_video_03_00-29-13-03.jpg",
                            "R002_ch1_video_01_01-07-25-19.jpg",
                            "R003_ch1_video_05_00-22-42-23.jpg",
                            "R004_ch1_video_01_01-12-22-00.jpg",
                            "R005_ch1_video_03_00-19-10-11.jpg",
                            "R006_ch1_video_01_00-45-02-10.jpg",
                            "R013_ch1_video_03_00-40-17-11.jpg"],
                  theme=davincieye.set(loader_color='#65aab1'),
                  title="Davinci Eye(Quantized for CPU)")
demo.launch()