Spaces:
Running
Running
Commit
·
2652021
1
Parent(s):
63e9f5b
Update app.py
Browse files
app.py
CHANGED
@@ -3,17 +3,17 @@ import gradio as gr
|
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
5 |
import cv2
|
6 |
-
|
7 |
core = Core()
|
8 |
|
9 |
# Read model to OpenVINO Runtime
|
10 |
model_onnx = core.read_model(model="Davinci_eye.onnx")
|
11 |
compiled_model_onnx = core.compile_model(model=model_onnx, device_name='CPU')
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
def normalize(img):
|
18 |
img=img.astype(np.float32)
|
19 |
mean=(0.485, 0.456, 0.406)
|
@@ -26,10 +26,10 @@ def segment_image(filepath):
|
|
26 |
image=cv2.imread(filepath)
|
27 |
image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
|
28 |
image = cv2.resize(image, (512,512))
|
29 |
-
x=
|
30 |
-
#ort_input={ort_session.get_inputs()[0].name:x.cpu().unsqueeze(0).float().numpy()}
|
31 |
-
#out=ort_session.run(None,ort_input)
|
32 |
-
out = compiled_model_onnx(
|
33 |
pred_mask=np.squeeze(np.argmax(out[0],1)).astype(np.uint8)
|
34 |
color_mask=cv2.applyColorMap(pred_mask,cv2.COLORMAP_MAGMA)*10
|
35 |
masked_image=cv2.addWeighted(image,0.6,color_mask,0.4,0.1)
|
|
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
5 |
import cv2
|
6 |
+
from torchvision import models,transforms
|
7 |
core = Core()
|
8 |
|
9 |
# Read model to OpenVINO Runtime
|
10 |
model_onnx = core.read_model(model="Davinci_eye.onnx")
|
11 |
compiled_model_onnx = core.compile_model(model=model_onnx, device_name='CPU')
|
12 |
|
13 |
+
tfms = transforms.Compose([
|
14 |
+
transforms.ToTensor(),
|
15 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # imagenet
|
16 |
+
])
|
17 |
def normalize(img):
|
18 |
img=img.astype(np.float32)
|
19 |
mean=(0.485, 0.456, 0.406)
|
|
|
26 |
image=cv2.imread(filepath)
|
27 |
image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
|
28 |
image = cv2.resize(image, (512,512))
|
29 |
+
x=tfms(image.copy()/255.)
|
30 |
+
#ort_input={ort_session.get_inputs()[0].name:x.cpu().unsqueeze(0).float().numpy()}
|
31 |
+
#out=ort_session.run(None,ort_input)
|
32 |
+
out = compiled_model_onnx([x.unsqueeze(0).float().cpu().numpy()])
|
33 |
pred_mask=np.squeeze(np.argmax(out[0],1)).astype(np.uint8)
|
34 |
color_mask=cv2.applyColorMap(pred_mask,cv2.COLORMAP_MAGMA)*10
|
35 |
masked_image=cv2.addWeighted(image,0.6,color_mask,0.4,0.1)
|