Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn.functional as F | |
import torch.nn as nn | |
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d | |
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm | |
from models.mossformer2_sr.utils import init_weights, get_padding | |
from models.mossformer2_sr.mossformer2 import MossFormer_MaskNet | |
from models.mossformer2_sr.snake import Snake1d | |
from typing import Optional, List, Union, Dict, Tuple | |
from models.mossformer2_sr.env import AttrDict | |
import typing | |
from torchaudio.transforms import Spectrogram, Resample | |
LRELU_SLOPE = 0.1 | |
class ResBlock1(torch.nn.Module): | |
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)): | |
super(ResBlock1, self).__init__() | |
self.h = h | |
self.convs1 = nn.ModuleList([ | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], | |
padding=get_padding(kernel_size, dilation[0]))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], | |
padding=get_padding(kernel_size, dilation[1]))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], | |
padding=get_padding(kernel_size, dilation[2]))) | |
#Snake1d(channels) | |
]) | |
self.convs1.apply(init_weights) | |
self.convs1_activates = nn.ModuleList([ | |
Snake1d(channels), | |
Snake1d(channels), | |
Snake1d(channels) | |
]) | |
self.convs2 = nn.ModuleList([ | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
padding=get_padding(kernel_size, 1))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
padding=get_padding(kernel_size, 1))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
padding=get_padding(kernel_size, 1))) | |
#Snake1d(channels) | |
]) | |
self.convs2.apply(init_weights) | |
#self.convs2_activate = Snake1d(channels) | |
self.convs2_activates = nn.ModuleList([ | |
Snake1d(channels), | |
Snake1d(channels), | |
Snake1d(channels) | |
]) | |
def forward(self, x): | |
for c1, c2, act1, act2 in zip(self.convs1, self.convs2, self.convs1_activates, self.convs2_activates): | |
#xt = F.leaky_relu(x, LRELU_SLOPE) | |
#print(f'xt: {xt.shape}') | |
xt = act1(x) | |
xt = c1(xt) | |
#xt = F.leaky_relu(xt, LRELU_SLOPE) | |
xt = act2(xt) | |
xt = c2(xt) | |
x = xt + x | |
return x | |
def remove_weight_norm(self): | |
for l in self.convs1: | |
remove_weight_norm(l) | |
for l in self.convs2: | |
remove_weight_norm(l) | |
class ResBlock2(torch.nn.Module): | |
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)): | |
super(ResBlock2, self).__init__() | |
self.h = h | |
self.convs = nn.ModuleList([ | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], | |
padding=get_padding(kernel_size, dilation[0]))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], | |
padding=get_padding(kernel_size, dilation[1]))) | |
#Snake1d(channels) | |
]) | |
self.convs.apply(init_weights) | |
#self.convs_activate = Snake1d(channels) | |
self.convs_activates = nn.ModuleList([ | |
Snake1d(channels), | |
Snake1d(channels) | |
]) | |
def forward(self, x): | |
for c, act in zip(self.convs, self.convs_activates): | |
#xt = F.leaky_relu(x, LRELU_SLOPE) | |
xt = act(x) | |
xt = c(xt) | |
x = xt + x | |
return x | |
def remove_weight_norm(self): | |
for l in self.convs: | |
remove_weight_norm(l) | |
class Generator(torch.nn.Module): | |
def __init__(self, h): | |
super(Generator, self).__init__() | |
self.h = h | |
self.num_kernels = len(h.resblock_kernel_sizes) | |
self.num_upsamples = len(h.upsample_rates) | |
self.conv_pre = weight_norm(Conv1d(80, h.upsample_initial_channel, 7, 1, padding=3)) | |
resblock = ResBlock1 if h.resblock == '1' else ResBlock2 | |
self.ups = nn.ModuleList() | |
self.snakes = nn.ModuleList() | |
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)): | |
self.snakes.append(Snake1d(h.upsample_initial_channel//(2**i))) | |
self.ups.append(weight_norm( | |
ConvTranspose1d(h.upsample_initial_channel//(2**i), h.upsample_initial_channel//(2**(i+1)), | |
k, u, padding=(k-u)//2))) | |
self.resblocks = nn.ModuleList() | |
for i in range(len(self.ups)): | |
ch = h.upsample_initial_channel//(2**(i+1)) | |
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)): | |
self.resblocks.append(resblock(h, ch, k, d)) | |
self.snake_post = Snake1d(ch) | |
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) | |
self.ups.apply(init_weights) | |
self.conv_post.apply(init_weights) | |
def forward(self, x): | |
x = self.conv_pre(x) | |
for i in range(self.num_upsamples): | |
#x = F.leaky_relu(x, LRELU_SLOPE) | |
#print(f'x {i}: {x.shape}') | |
x = self.snakes[i](x) | |
x = self.ups[i](x) | |
xs = None | |
for j in range(self.num_kernels): | |
if xs is None: | |
xs = self.resblocks[i*self.num_kernels+j](x) | |
else: | |
xs += self.resblocks[i*self.num_kernels+j](x) | |
x = xs / self.num_kernels | |
#x = F.leaky_relu(x) | |
x = self.snake_post(x) | |
x = self.conv_post(x) | |
x = torch.tanh(x) | |
return x | |
def remove_weight_norm(self): | |
#print('Removing weight norm...') | |
for l in self.ups: | |
remove_weight_norm(l) | |
for l in self.resblocks: | |
l.remove_weight_norm() | |
remove_weight_norm(self.conv_pre) | |
remove_weight_norm(self.conv_post) | |
class DiscriminatorP(torch.nn.Module): | |
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): | |
super(DiscriminatorP, self).__init__() | |
self.period = period | |
norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
self.convs = nn.ModuleList([ | |
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | |
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | |
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | |
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | |
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))), | |
]) | |
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) | |
def forward(self, x): | |
fmap = [] | |
# 1d to 2d | |
b, c, t = x.shape | |
if t % self.period != 0: # pad first | |
n_pad = self.period - (t % self.period) | |
x = F.pad(x, (0, n_pad), "reflect") | |
t = t + n_pad | |
x = x.view(b, c, t // self.period, self.period) | |
for l in self.convs: | |
x = l(x) | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
class MultiPeriodDiscriminator(torch.nn.Module): | |
def __init__(self): | |
super(MultiPeriodDiscriminator, self).__init__() | |
self.discriminators = nn.ModuleList([ | |
DiscriminatorP(2), | |
DiscriminatorP(3), | |
DiscriminatorP(5), | |
DiscriminatorP(7), | |
DiscriminatorP(11), | |
]) | |
def forward(self, y, y_hat): | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for i, d in enumerate(self.discriminators): | |
y_d_r, fmap_r = d(y) | |
y_d_g, fmap_g = d(y_hat) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
class DiscriminatorS(torch.nn.Module): | |
def __init__(self, use_spectral_norm=False): | |
super(DiscriminatorS, self).__init__() | |
norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
self.convs = nn.ModuleList([ | |
norm_f(Conv1d(1, 128, 15, 1, padding=7)), | |
norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)), | |
norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)), | |
norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)), | |
norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)), | |
norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)), | |
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), | |
]) | |
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) | |
def forward(self, x): | |
fmap = [] | |
for l in self.convs: | |
x = l(x) | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
class MultiScaleDiscriminator(torch.nn.Module): | |
def __init__(self): | |
super(MultiScaleDiscriminator, self).__init__() | |
self.discriminators = nn.ModuleList([ | |
DiscriminatorS(use_spectral_norm=True), | |
DiscriminatorS(), | |
DiscriminatorS(), | |
]) | |
self.meanpools = nn.ModuleList([ | |
AvgPool1d(4, 2, padding=2), | |
AvgPool1d(4, 2, padding=2) | |
]) | |
def forward(self, y, y_hat): | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for i, d in enumerate(self.discriminators): | |
if i != 0: | |
y = self.meanpools[i-1](y) | |
y_hat = self.meanpools[i-1](y_hat) | |
y_d_r, fmap_r = d(y) | |
y_d_g, fmap_g = d(y_hat) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
# Method based on descript-audio-codec: https://github.com/descriptinc/descript-audio-codec | |
# Modified code adapted from https://github.com/gemelo-ai/vocos under the MIT license. | |
# LICENSE is in incl_licenses directory. | |
class DiscriminatorB(nn.Module): | |
def __init__( | |
self, | |
window_length: int, | |
channels: int = 32, | |
hop_factor: float = 0.25, | |
bands: Tuple[Tuple[float, float], ...] = ( | |
(0.0, 0.1), | |
(0.1, 0.25), | |
(0.25, 0.5), | |
(0.5, 0.75), | |
(0.75, 1.0), | |
), | |
): | |
super().__init__() | |
self.window_length = window_length | |
self.hop_factor = hop_factor | |
self.spec_fn = Spectrogram( | |
n_fft=window_length, | |
hop_length=int(window_length * hop_factor), | |
win_length=window_length, | |
power=None, | |
) | |
n_fft = window_length // 2 + 1 | |
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands] | |
self.bands = bands | |
convs = lambda: nn.ModuleList( | |
[ | |
weight_norm(nn.Conv2d(2, channels, (3, 9), (1, 1), padding=(1, 4))), | |
weight_norm( | |
nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4)) | |
), | |
weight_norm( | |
nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4)) | |
), | |
weight_norm( | |
nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4)) | |
), | |
weight_norm( | |
nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1)) | |
), | |
] | |
) | |
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))]) | |
self.conv_post = weight_norm( | |
nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1)) | |
) | |
def spectrogram(self, x: torch.Tensor) -> List[torch.Tensor]: | |
# Remove DC offset | |
x = x - x.mean(dim=-1, keepdims=True) | |
# Peak normalize the volume of input audio | |
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9) | |
x = self.spec_fn(x) | |
x = torch.view_as_real(x) | |
x = x.permute(0, 3, 2, 1) # [B, F, T, C] -> [B, C, T, F] | |
# Split into bands | |
x_bands = [x[..., b[0] : b[1]] for b in self.bands] | |
return x_bands | |
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]: | |
x_bands = self.spectrogram(x.squeeze(1)) | |
fmap = [] | |
x = [] | |
for band, stack in zip(x_bands, self.band_convs): | |
for i, layer in enumerate(stack): | |
band = layer(band) | |
band = torch.nn.functional.leaky_relu(band, 0.1) | |
if i > 0: | |
fmap.append(band) | |
x.append(band) | |
x = torch.cat(x, dim=-1) | |
x = self.conv_post(x) | |
fmap.append(x) | |
return x, fmap | |
# Method based on descript-audio-codec: https://github.com/descriptinc/descript-audio-codec | |
# Modified code adapted from https://github.com/gemelo-ai/vocos under the MIT license. | |
# LICENSE is in incl_licenses directory. | |
class MultiBandDiscriminator(nn.Module): | |
def __init__( | |
self, | |
h, | |
): | |
""" | |
Multi-band multi-scale STFT discriminator, with the architecture based on https://github.com/descriptinc/descript-audio-codec. | |
and the modified code adapted from https://github.com/gemelo-ai/vocos. | |
""" | |
super().__init__() | |
# fft_sizes (list[int]): Tuple of window lengths for FFT. Defaults to [2048, 1024, 512] if not set in h. | |
self.fft_sizes = h.get("mbd_fft_sizes", [2048, 1024, 512]) | |
self.discriminators = nn.ModuleList( | |
[DiscriminatorB(window_length=w) for w in self.fft_sizes] | |
) | |
def forward(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[ | |
List[torch.Tensor], | |
List[torch.Tensor], | |
List[List[torch.Tensor]], | |
List[List[torch.Tensor]], | |
]: | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for d in self.discriminators: | |
y_d_r, fmap_r = d(x=y) | |
y_d_g, fmap_g = d(x=y_hat) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
def feature_loss(fmap_r, fmap_g): | |
loss = 0 | |
for dr, dg in zip(fmap_r, fmap_g): | |
for rl, gl in zip(dr, dg): | |
loss += torch.mean(torch.abs(rl - gl)) | |
return loss*2 | |
def discriminator_loss(disc_real_outputs, disc_generated_outputs): | |
loss = 0 | |
r_losses = [] | |
g_losses = [] | |
for dr, dg in zip(disc_real_outputs, disc_generated_outputs): | |
r_loss = torch.mean((1-dr)**2) | |
g_loss = torch.mean(dg**2) | |
loss += (r_loss + g_loss) | |
r_losses.append(r_loss.item()) | |
g_losses.append(g_loss.item()) | |
return loss, r_losses, g_losses | |
def generator_loss(disc_outputs): | |
loss = 0 | |
gen_losses = [] | |
for dg in disc_outputs: | |
l = torch.mean((1-dg)**2) | |
gen_losses.append(l) | |
loss += l | |
return loss, gen_losses | |
class Mossformer(nn.Module): | |
def __init__(self): | |
super(Mossformer, self).__init__() | |
self.mossformer = MossFormer_MaskNet(in_channels=80, out_channels=512, out_channels_final=80) | |
def forward(self, input): | |
out = self.mossformer(input) | |
return out | |