import torch import torch.nn.functional as F import torch.nn as nn from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm from models.mossformer2_sr.utils import init_weights, get_padding from models.mossformer2_sr.mossformer2 import MossFormer_MaskNet from models.mossformer2_sr.snake import Snake1d from typing import Optional, List, Union, Dict, Tuple from models.mossformer2_sr.env import AttrDict import typing from torchaudio.transforms import Spectrogram, Resample LRELU_SLOPE = 0.1 class ResBlock1(torch.nn.Module): def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)): super(ResBlock1, self).__init__() self.h = h self.convs1 = nn.ModuleList([ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], padding=get_padding(kernel_size, dilation[2]))) #Snake1d(channels) ]) self.convs1.apply(init_weights) self.convs1_activates = nn.ModuleList([ Snake1d(channels), Snake1d(channels), Snake1d(channels) ]) self.convs2 = nn.ModuleList([ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))) #Snake1d(channels) ]) self.convs2.apply(init_weights) #self.convs2_activate = Snake1d(channels) self.convs2_activates = nn.ModuleList([ Snake1d(channels), Snake1d(channels), Snake1d(channels) ]) def forward(self, x): for c1, c2, act1, act2 in zip(self.convs1, self.convs2, self.convs1_activates, self.convs2_activates): #xt = F.leaky_relu(x, LRELU_SLOPE) #print(f'xt: {xt.shape}') xt = act1(x) xt = c1(xt) #xt = F.leaky_relu(xt, LRELU_SLOPE) xt = act2(xt) xt = c2(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs1: remove_weight_norm(l) for l in self.convs2: remove_weight_norm(l) class ResBlock2(torch.nn.Module): def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)): super(ResBlock2, self).__init__() self.h = h self.convs = nn.ModuleList([ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]))) #Snake1d(channels) ]) self.convs.apply(init_weights) #self.convs_activate = Snake1d(channels) self.convs_activates = nn.ModuleList([ Snake1d(channels), Snake1d(channels) ]) def forward(self, x): for c, act in zip(self.convs, self.convs_activates): #xt = F.leaky_relu(x, LRELU_SLOPE) xt = act(x) xt = c(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs: remove_weight_norm(l) class Generator(torch.nn.Module): def __init__(self, h): super(Generator, self).__init__() self.h = h self.num_kernels = len(h.resblock_kernel_sizes) self.num_upsamples = len(h.upsample_rates) self.conv_pre = weight_norm(Conv1d(80, h.upsample_initial_channel, 7, 1, padding=3)) resblock = ResBlock1 if h.resblock == '1' else ResBlock2 self.ups = nn.ModuleList() self.snakes = nn.ModuleList() for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)): self.snakes.append(Snake1d(h.upsample_initial_channel//(2**i))) self.ups.append(weight_norm( ConvTranspose1d(h.upsample_initial_channel//(2**i), h.upsample_initial_channel//(2**(i+1)), k, u, padding=(k-u)//2))) self.resblocks = nn.ModuleList() for i in range(len(self.ups)): ch = h.upsample_initial_channel//(2**(i+1)) for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)): self.resblocks.append(resblock(h, ch, k, d)) self.snake_post = Snake1d(ch) self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) self.ups.apply(init_weights) self.conv_post.apply(init_weights) def forward(self, x): x = self.conv_pre(x) for i in range(self.num_upsamples): #x = F.leaky_relu(x, LRELU_SLOPE) #print(f'x {i}: {x.shape}') x = self.snakes[i](x) x = self.ups[i](x) xs = None for j in range(self.num_kernels): if xs is None: xs = self.resblocks[i*self.num_kernels+j](x) else: xs += self.resblocks[i*self.num_kernels+j](x) x = xs / self.num_kernels #x = F.leaky_relu(x) x = self.snake_post(x) x = self.conv_post(x) x = torch.tanh(x) return x def remove_weight_norm(self): #print('Removing weight norm...') for l in self.ups: remove_weight_norm(l) for l in self.resblocks: l.remove_weight_norm() remove_weight_norm(self.conv_pre) remove_weight_norm(self.conv_post) class DiscriminatorP(torch.nn.Module): def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): super(DiscriminatorP, self).__init__() self.period = period norm_f = weight_norm if use_spectral_norm == False else spectral_norm self.convs = nn.ModuleList([ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))), ]) self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) def forward(self, x): fmap = [] # 1d to 2d b, c, t = x.shape if t % self.period != 0: # pad first n_pad = self.period - (t % self.period) x = F.pad(x, (0, n_pad), "reflect") t = t + n_pad x = x.view(b, c, t // self.period, self.period) for l in self.convs: x = l(x) x = F.leaky_relu(x, LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class MultiPeriodDiscriminator(torch.nn.Module): def __init__(self): super(MultiPeriodDiscriminator, self).__init__() self.discriminators = nn.ModuleList([ DiscriminatorP(2), DiscriminatorP(3), DiscriminatorP(5), DiscriminatorP(7), DiscriminatorP(11), ]) def forward(self, y, y_hat): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs class DiscriminatorS(torch.nn.Module): def __init__(self, use_spectral_norm=False): super(DiscriminatorS, self).__init__() norm_f = weight_norm if use_spectral_norm == False else spectral_norm self.convs = nn.ModuleList([ norm_f(Conv1d(1, 128, 15, 1, padding=7)), norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)), norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)), norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)), norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)), norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)), norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), ]) self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) def forward(self, x): fmap = [] for l in self.convs: x = l(x) x = F.leaky_relu(x, LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class MultiScaleDiscriminator(torch.nn.Module): def __init__(self): super(MultiScaleDiscriminator, self).__init__() self.discriminators = nn.ModuleList([ DiscriminatorS(use_spectral_norm=True), DiscriminatorS(), DiscriminatorS(), ]) self.meanpools = nn.ModuleList([ AvgPool1d(4, 2, padding=2), AvgPool1d(4, 2, padding=2) ]) def forward(self, y, y_hat): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): if i != 0: y = self.meanpools[i-1](y) y_hat = self.meanpools[i-1](y_hat) y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs # Method based on descript-audio-codec: https://github.com/descriptinc/descript-audio-codec # Modified code adapted from https://github.com/gemelo-ai/vocos under the MIT license. # LICENSE is in incl_licenses directory. class DiscriminatorB(nn.Module): def __init__( self, window_length: int, channels: int = 32, hop_factor: float = 0.25, bands: Tuple[Tuple[float, float], ...] = ( (0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0), ), ): super().__init__() self.window_length = window_length self.hop_factor = hop_factor self.spec_fn = Spectrogram( n_fft=window_length, hop_length=int(window_length * hop_factor), win_length=window_length, power=None, ) n_fft = window_length // 2 + 1 bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands] self.bands = bands convs = lambda: nn.ModuleList( [ weight_norm(nn.Conv2d(2, channels, (3, 9), (1, 1), padding=(1, 4))), weight_norm( nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4)) ), weight_norm( nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4)) ), weight_norm( nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4)) ), weight_norm( nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1)) ), ] ) self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))]) self.conv_post = weight_norm( nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1)) ) def spectrogram(self, x: torch.Tensor) -> List[torch.Tensor]: # Remove DC offset x = x - x.mean(dim=-1, keepdims=True) # Peak normalize the volume of input audio x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9) x = self.spec_fn(x) x = torch.view_as_real(x) x = x.permute(0, 3, 2, 1) # [B, F, T, C] -> [B, C, T, F] # Split into bands x_bands = [x[..., b[0] : b[1]] for b in self.bands] return x_bands def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]: x_bands = self.spectrogram(x.squeeze(1)) fmap = [] x = [] for band, stack in zip(x_bands, self.band_convs): for i, layer in enumerate(stack): band = layer(band) band = torch.nn.functional.leaky_relu(band, 0.1) if i > 0: fmap.append(band) x.append(band) x = torch.cat(x, dim=-1) x = self.conv_post(x) fmap.append(x) return x, fmap # Method based on descript-audio-codec: https://github.com/descriptinc/descript-audio-codec # Modified code adapted from https://github.com/gemelo-ai/vocos under the MIT license. # LICENSE is in incl_licenses directory. class MultiBandDiscriminator(nn.Module): def __init__( self, h, ): """ Multi-band multi-scale STFT discriminator, with the architecture based on https://github.com/descriptinc/descript-audio-codec. and the modified code adapted from https://github.com/gemelo-ai/vocos. """ super().__init__() # fft_sizes (list[int]): Tuple of window lengths for FFT. Defaults to [2048, 1024, 512] if not set in h. self.fft_sizes = h.get("mbd_fft_sizes", [2048, 1024, 512]) self.discriminators = nn.ModuleList( [DiscriminatorB(window_length=w) for w in self.fft_sizes] ) def forward(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[ List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]], ]: y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for d in self.discriminators: y_d_r, fmap_r = d(x=y) y_d_g, fmap_g = d(x=y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs def feature_loss(fmap_r, fmap_g): loss = 0 for dr, dg in zip(fmap_r, fmap_g): for rl, gl in zip(dr, dg): loss += torch.mean(torch.abs(rl - gl)) return loss*2 def discriminator_loss(disc_real_outputs, disc_generated_outputs): loss = 0 r_losses = [] g_losses = [] for dr, dg in zip(disc_real_outputs, disc_generated_outputs): r_loss = torch.mean((1-dr)**2) g_loss = torch.mean(dg**2) loss += (r_loss + g_loss) r_losses.append(r_loss.item()) g_losses.append(g_loss.item()) return loss, r_losses, g_losses def generator_loss(disc_outputs): loss = 0 gen_losses = [] for dg in disc_outputs: l = torch.mean((1-dg)**2) gen_losses.append(l) loss += l return loss, gen_losses class Mossformer(nn.Module): def __init__(self): super(Mossformer, self).__init__() self.mossformer = MossFormer_MaskNet(in_channels=80, out_channels=512, out_channels_final=80) def forward(self, input): out = self.mossformer(input) return out