Spaces:
Sleeping
Sleeping
File size: 4,203 Bytes
3a34d98 7faf6a9 3a34d98 7faf6a9 3a34d98 7faf6a9 3a34d98 6a7b0a9 3a34d98 ddcdb07 3a34d98 669c2e0 a60a640 669c2e0 db8354d 0a34307 db8354d 3a34d98 db8354d 64b1698 db8354d 0f5b179 64b1698 0f5b179 3a34d98 ed25de7 3a34d98 c5b4228 3a34d98 c5b4228 3a34d98 c5b4228 3a34d98 669c2e0 db8354d 3a34d98 db8354d 3a34d98 ed25de7 0a34307 3a34d98 ed25de7 3a34d98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
import os
import sys
import os.path as osp
from pathlib import Path
import cv2
import gradio as gr
import torch
import math
import spaces
try:
import mmpose
except:
os.system('pip install /home/user/app/main/transformer_utils')
os.system('cp -rf /home/user/app/assets/conversions.py /home/user/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torchgeometry/core/conversions.py')
DEFAULT_MODEL='postometro' # for config
OUT_FOLDER = '/home/user/app/demo_out'
os.makedirs(OUT_FOLDER, exist_ok=True)
@spaces.GPU(enable_queue=True)
def infer(image_input, in_threshold=0.5, num_people="Single person", render_mesh=False):
num_gpus = 1 if torch.cuda.is_available() else -1
# dismiss cuda information
# print("!!! torch.cuda.is_available: ", torch.cuda.is_available())
# print("!!! torch.cuda.device_count: ", torch.cuda.device_count())
# print("CUDA version: ", torch.version.cuda)
# index = torch.cuda.current_device()
# print("CUDA current_device: ", index)
# print("CUDA device_name: ", torch.cuda.get_device_name(index))
from main.inference import Inferer
inferer = Inferer(DEFAULT_MODEL, num_gpus, OUT_FOLDER)
os.system(f'rm -rf {OUT_FOLDER}/*')
multi_person = False if (num_people == "Single person") else True
vis_img, bbox_img, num_bbox, mmdet_box = inferer.infer(image_input, in_threshold, multi_person, not(render_mesh))
return vis_img, bbox_img, "bbox num: {}\nbbox meta: {}".format(num_bbox, mmdet_box)
TITLE = '''<h1 align="center">PostoMETRO: Pose Token Enhanced Mesh Transformer for Robust 3D Human Mesh Recovery</h1>'''
DESCRIPTION = '''
<b>Official Gradio demo</b> for <b>PostoMETRO: Pose Token Enhanced Mesh Transformer for Robust 3D Human Mesh Recovery</b>.<br>
<p>
Note: You can drop a image at the panel (or select one of the examples)
to obtain the 3D parametric reconstructions of the detected humans.
</p>
<p>
Check out <a href="https://arxiv.org/abs/2403.12473"><b>our paper on arxiv page</b></a>!
</p>
<p>
Our demo is built upon <a href="https://huggingface.co./spaces/caizhongang/SMPLer-X"><b>SMPLer-X</b></a>.
Thanks for their amazing works!
</p>
'''
with gr.Blocks(title="PostoMETRO", css=".gradio-container") as demo:
gr.Markdown(TITLE)
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
image_input = gr.Image(label="Input image", elem_classes="Image")
threshold = gr.Slider(0, 1.0, value=0.2, label='BBox detection threshold',
info="PostoMETRO will take in cropped bboxes as input to produce human mesh. A small threshold will prevent redundant bboxes and vice versa.")
num_people = gr.Radio(
choices=["Single person", "Multiple people"],
value="Multiple people",
label="Number of people",
info="Choose how many people are there in the image. Default to 'Multiple people' for better visualization.",
interactive=True,
scale=1,)
mesh_as_vertices = gr.Checkbox(
label="Render as mesh",
value=True,
info="Default to render mesh for better visualization. For faster inference, one can choose to not check the box.",
interactive=True,
scale=1,)
send_button = gr.Button("Infer")
with gr.Column():
processed_frames = gr.Image(label="Rendered Results")
bbox_frames = gr.Image(label="Bbox Results")
debug_textbox = gr.Textbox(label="Debug information")
# example_images = gr.Examples([])
send_button.click(fn=infer, inputs=[image_input, threshold, num_people, mesh_as_vertices], outputs=[processed_frames, bbox_frames, debug_textbox])
# with gr.Row():
example_images = gr.Examples([
['/home/user/app/assets/01.jpg'],
['/home/user/app/assets/02.jpg'],
['/home/user/app/assets/03.jpg'],
['/home/user/app/assets/04.jpg'],
['/home/user/app/assets/05.jpg'],
['/home/user/app/assets/06.jpg'],
],
inputs=[image_input, 0.2])
#demo.queue()
demo.queue().launch(debug=True)
|