imabackstabber commited on
Commit
ed25de7
·
1 Parent(s): 0f987d3

test mmdet pipeline

Browse files
Files changed (3) hide show
  1. app.py +7 -5
  2. assets/04.jpg +0 -0
  3. main/inference.py +1 -1
app.py CHANGED
@@ -32,7 +32,7 @@ def infer(image_input, in_threshold=0.5, num_people="Single person", render_mesh
32
  inferer = Inferer(DEFAULT_MODEL, num_gpus, OUT_FOLDER)
33
  os.system(f'rm -rf {OUT_FOLDER}/*')
34
  multi_person = False if (num_people == "Single person") else True
35
- vis_img, bbox = inferer.infer(image_input, in_threshold, 0, multi_person, not(render_mesh))
36
 
37
  # cap = cv2.VideoCapture(video_input)
38
  # fps = math.ceil(cap.get(5))
@@ -67,7 +67,7 @@ def infer(image_input, in_threshold=0.5, num_people="Single person", render_mesh
67
  # os.system(f'zip -r {save_mesh_file} {save_path_mesh}')
68
  # os.system(f'zip -r {save_smplx_file} {save_path_smplx}')
69
  # yield img, video_path, save_mesh_file, save_smplx_file
70
- return vis_img, "bbox meta: {}".format(bbox)
71
 
72
  TITLE = '''<h1 align="center">PostoMETRO: Pose Token Enhanced Mesh Transformer for Robust 3D Human Mesh Recovery</h1>'''
73
  DESCRIPTION = '''
@@ -86,7 +86,8 @@ with gr.Blocks(title="PostoMETRO", css=".gradio-container") as demo:
86
  with gr.Row():
87
  with gr.Column():
88
  image_input = gr.Image(label="Input image", elem_classes="Image")
89
- threshold = gr.Slider(0, 1.0, value=0.5, label='BBox detection threshold')
 
90
  num_people = gr.Radio(
91
  choices=["Single person", "Multiple people"],
92
  value="Single person",
@@ -96,7 +97,7 @@ with gr.Blocks(title="PostoMETRO", css=".gradio-container") as demo:
96
  scale=1,)
97
  mesh_as_vertices = gr.Checkbox(
98
  label="Render as mesh",
99
- info="By default, the estimated SMPL-X parameters are rendered as vertices for faster visualization. Check this option if you want to visualize meshes instead.",
100
  interactive=True,
101
  scale=1,)
102
  send_button = gr.Button("Infer")
@@ -111,8 +112,9 @@ with gr.Blocks(title="PostoMETRO", css=".gradio-container") as demo:
111
  ['/home/user/app/assets/01.jpg'],
112
  ['/home/user/app/assets/02.jpg'],
113
  ['/home/user/app/assets/03.jpg'],
 
114
  ],
115
- inputs=[image_input, 0.5])
116
 
117
  #demo.queue()
118
  demo.queue().launch(debug=True)
 
32
  inferer = Inferer(DEFAULT_MODEL, num_gpus, OUT_FOLDER)
33
  os.system(f'rm -rf {OUT_FOLDER}/*')
34
  multi_person = False if (num_people == "Single person") else True
35
+ vis_img, num_bbox, mmdet_box = inferer.infer(image_input, in_threshold, 0, multi_person, not(render_mesh))
36
 
37
  # cap = cv2.VideoCapture(video_input)
38
  # fps = math.ceil(cap.get(5))
 
67
  # os.system(f'zip -r {save_mesh_file} {save_path_mesh}')
68
  # os.system(f'zip -r {save_smplx_file} {save_path_smplx}')
69
  # yield img, video_path, save_mesh_file, save_smplx_file
70
+ return vis_img, "bbox num: {}, bbox meta: {}".format(num_bbox, mmdet_box)
71
 
72
  TITLE = '''<h1 align="center">PostoMETRO: Pose Token Enhanced Mesh Transformer for Robust 3D Human Mesh Recovery</h1>'''
73
  DESCRIPTION = '''
 
86
  with gr.Row():
87
  with gr.Column():
88
  image_input = gr.Image(label="Input image", elem_classes="Image")
89
+ threshold = gr.Slider(0, 1.0, value=0.2, label='BBox detection threshold',
90
+ info="PostoMETRO will take in cropped bboxes as input to produce human mesh. A small threshold will prevent redundant bboxes and vice versa.")
91
  num_people = gr.Radio(
92
  choices=["Single person", "Multiple people"],
93
  value="Single person",
 
97
  scale=1,)
98
  mesh_as_vertices = gr.Checkbox(
99
  label="Render as mesh",
100
+ info="By default, the estimated SMPL parameters are rendered as vertices for faster visualization. Check this option if you want to visualize meshes instead.",
101
  interactive=True,
102
  scale=1,)
103
  send_button = gr.Button("Infer")
 
112
  ['/home/user/app/assets/01.jpg'],
113
  ['/home/user/app/assets/02.jpg'],
114
  ['/home/user/app/assets/03.jpg'],
115
+ ['/home/user/app/assets/04.jpg'],
116
  ],
117
+ inputs=[image_input, 0.2])
118
 
119
  #demo.queue()
120
  demo.queue().launch(debug=True)
assets/04.jpg ADDED
main/inference.py CHANGED
@@ -142,5 +142,5 @@ class Inferer:
142
  # vis_img = render_mesh(vis_img, mesh, smpl_x.face, {'focal': focal, 'princpt': princpt},
143
  # mesh_as_vertices=mesh_as_vertices)
144
  # vis_img = vis_img.astype('uint8')
145
- return vis_img, bbox
146
 
 
142
  # vis_img = render_mesh(vis_img, mesh, smpl_x.face, {'focal': focal, 'princpt': princpt},
143
  # mesh_as_vertices=mesh_as_vertices)
144
  # vis_img = vis_img.astype('uint8')
145
+ return vis_img, num_bbox, mmdet_box
146