Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import json | |
import requests | |
#Streaming endpoint | |
API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "/generate_stream" | |
#Huggingface provided GPT4 OpenAI API Key | |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") | |
#Inferenec function | |
def predict(system_msg, inputs, top_p, temperature, chat_counter, chatbot=[], history=[]): | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {OPENAI_API_KEY}" | |
} | |
print(f"system message is ^^ {system_msg}") | |
if system_msg.strip() == '': | |
initial_message = [{"role": "user", "content": f"{inputs}"},] | |
multi_turn_message = [] | |
else: | |
initial_message= [{"role": "system", "content": system_msg}, | |
{"role": "user", "content": f"{inputs}"},] | |
multi_turn_message = [{"role": "system", "content": system_msg},] | |
if chat_counter == 0 : | |
payload = { | |
"model": "gpt-3.5-turbo", | |
"messages": initial_message , | |
"temperature" : 1.0, | |
"top_p":1.0, | |
"n" : 1, | |
"stream": True, | |
"presence_penalty":0, | |
"frequency_penalty":0, | |
} | |
print(f"chat_counter - {chat_counter}") | |
else: #if chat_counter != 0 : | |
messages=multi_turn_message # Of the type of - [{"role": "system", "content": system_msg},] | |
for data in chatbot: | |
user = {} | |
user["role"] = "user" | |
user["content"] = data[0] | |
assistant = {} | |
assistant["role"] = "assistant" | |
assistant["content"] = data[1] | |
messages.append(user) | |
messages.append(assistant) | |
temp = {} | |
temp["role"] = "user" | |
temp["content"] = inputs | |
messages.append(temp) | |
#messages | |
payload = { | |
"model": "gpt-3.5-turbo", | |
"messages": messages, # Of the type of [{"role": "user", "content": f"{inputs}"}], | |
"temperature" : temperature, #1.0, | |
"top_p": top_p, #1.0, | |
"n" : 1, | |
"stream": True, | |
"presence_penalty":0, | |
"frequency_penalty":0,} | |
chat_counter+=1 | |
history.append(inputs) | |
print(f"Logging : payload is - {payload}") | |
# make a POST request to the API endpoint using the requests.post method, passing in stream=True | |
response = requests.post(API_URL, headers=headers, json=payload, stream=True) | |
print(f"Logging : response code - {response}") | |
token_counter = 0 | |
partial_words = "" | |
counter=0 | |
for chunk in response.iter_lines(): | |
#Skipping first chunk | |
if counter == 0: | |
counter+=1 | |
continue | |
# check whether each line is non-empty | |
if chunk.decode() : | |
chunk = chunk.decode() | |
# decode each line as response data is in bytes | |
if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']: | |
partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"] | |
if token_counter == 0: | |
history.append(" " + partial_words) | |
else: | |
history[-1] = partial_words | |
chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list | |
token_counter+=1 | |
yield chat, history, chat_counter, response # resembles {chatbot: chat, state: history} | |
#Resetting to blank | |
def reset_textbox(): | |
return gr.update(value='') | |
#to set a component as visible=False | |
def set_visible_false(): | |
return gr.update(visible=False) | |
#to set a component as visible=True | |
def set_visible_true(): | |
return gr.update(visible=True) | |
def gen_gradio_demo(): | |
title = """<h1 align="center">๐ Swarm Intelligence Agents ๐๐</h1>""" | |
#display message for themes feature | |
theme_addon_msg = """<center>๐ he swarm of agents combines a huge number of parallel agents divided into roles, including examiners, QA, evaluators, managers, analytics, and googlers. | |
<br>๐The agents use smart task decomposition and optimization processes to ensure accurate and efficient research on any topic.๐จ</center> | |
""" | |
#Using info to add additional information about System message in GPT4 | |
system_msg_info = """Swarm pre-configured for best practices using whitelists of top internet resources'""" | |
#Modifying existing Gradio Theme | |
theme = gr.themes.Soft(primary_hue="zinc", secondary_hue="green", neutral_hue="green", | |
text_size=gr.themes.sizes.text_lg) | |
with gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;} #chatbot {height: 520px; overflow: auto;}""", | |
theme=theme) as demo: | |
gr.HTML(title) | |
gr.HTML("""<h3 align="center">๐ฅUsing a swarm of automated agents, we can perform fast and accurate research on any topic. ๐๐. ๐๐ฅณ๐You don't need to spent tons of hours during reseachy๐</h1>""") | |
gr.HTML(theme_addon_msg) | |
gr.HTML('''<center><a href="https://huggingface.co./spaces/swarm-agents/swarm-agents?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space and run securely with your OpenAI API Key</center>''') | |
with gr.Column(elem_id = "col_container"): | |
#GPT4 API Key is provided by Huggingface | |
with gr.Accordion(label="Swarm Setup:", open=False): | |
system_msg = gr.Textbox(label="Instruct the AI Assistant to set its beaviour", info = system_msg_info, value="") | |
accordion_msg = gr.HTML(value="๐ง To set System message you will have to refresh the app", visible=False) | |
chatbot = gr.Chatbot(label='Swarm Intelligence Search', elem_id="chatbot") | |
inputs = gr.Textbox(placeholder= "Enter your search query here...", label= "Type an input and press Enter") | |
state = gr.State([]) | |
with gr.Row(): | |
with gr.Column(scale=7): | |
b1 = gr.Button().style(full_width=True) | |
with gr.Column(scale=3): | |
server_status_code = gr.Textbox(label="Status code from OpenAI server", ) | |
#top_p, temperature | |
with gr.Accordion("Parameters", open=False): | |
top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",) | |
temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",) | |
chat_counter = gr.Number(value=0, visible=False, precision=0) | |
#Event handling | |
inputs.submit( predict, [system_msg, inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code],) #openai_api_key | |
b1.click( predict, [system_msg, inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code],) #openai_api_key | |
inputs.submit(set_visible_false, [], [system_msg]) | |
b1.click(set_visible_false, [], [system_msg]) | |
inputs.submit(set_visible_true, [], [accordion_msg]) | |
b1.click(set_visible_true, [], [accordion_msg]) | |
b1.click(reset_textbox, [], [inputs]) | |
inputs.submit(reset_textbox, [], [inputs]) | |
return demo |