File size: 7,379 Bytes
b3509ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import gradio as gr
import os 
import json 
import requests

#Streaming endpoint 
API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "/generate_stream"

#Huggingface provided GPT4 OpenAI API Key 
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") 

#Inferenec function
def predict(system_msg, inputs, top_p, temperature, chat_counter, chatbot=[], history=[]):  

    headers = {
    "Content-Type": "application/json",
    "Authorization": f"Bearer {OPENAI_API_KEY}"
    }
    print(f"system message is ^^ {system_msg}")
    if system_msg.strip() == '':
        initial_message = [{"role": "user", "content": f"{inputs}"},]
        multi_turn_message = []
    else:
        initial_message= [{"role": "system", "content": system_msg},
                   {"role": "user", "content": f"{inputs}"},]
        multi_turn_message = [{"role": "system", "content": system_msg},]
        
    if chat_counter == 0 :
        payload = {
        "model": "gpt-3.5-turbo",
        "messages": initial_message , 
        "temperature" : 1.0,
        "top_p":1.0,
        "n" : 1,
        "stream": True,
        "presence_penalty":0,
        "frequency_penalty":0,
        }
        print(f"chat_counter - {chat_counter}")
    else: #if chat_counter != 0 :
        messages=multi_turn_message # Of the type of - [{"role": "system", "content": system_msg},]
        for data in chatbot:
          user = {}
          user["role"] = "user" 
          user["content"] = data[0] 
          assistant = {}
          assistant["role"] = "assistant" 
          assistant["content"] = data[1]
          messages.append(user)
          messages.append(assistant)
        temp = {}
        temp["role"] = "user" 
        temp["content"] = inputs
        messages.append(temp)
        #messages
        payload = {
        "model": "gpt-3.5-turbo",
        "messages": messages, # Of the type of [{"role": "user", "content": f"{inputs}"}],
        "temperature" : temperature, #1.0,
        "top_p": top_p, #1.0,
        "n" : 1,
        "stream": True,
        "presence_penalty":0,
        "frequency_penalty":0,}

    chat_counter+=1

    history.append(inputs)
    print(f"Logging : payload is - {payload}")
    # make a POST request to the API endpoint using the requests.post method, passing in stream=True
    response = requests.post(API_URL, headers=headers, json=payload, stream=True)
    print(f"Logging : response code - {response}")
    token_counter = 0 
    partial_words = "" 

    counter=0
    for chunk in response.iter_lines():
        #Skipping first chunk
        if counter == 0:
          counter+=1
          continue
        # check whether each line is non-empty
        if chunk.decode() :
          chunk = chunk.decode()
          # decode each line as response data is in bytes
          if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']:
              partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"]
              if token_counter == 0:
                history.append(" " + partial_words)
              else:
                history[-1] = partial_words
              chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ]  # convert to tuples of list
              token_counter+=1
              yield chat, history, chat_counter, response  # resembles {chatbot: chat, state: history}  
                   
#Resetting to blank
def reset_textbox():
    return gr.update(value='')

#to set a component as visible=False
def set_visible_false():
    return gr.update(visible=False)

#to set a component as visible=True
def set_visible_true():
    return gr.update(visible=True)

def gen_gradio_demo():
    title = """<h1 align="center">๐Ÿ” Swarm Intelligence Agents ๐Ÿœ๐Ÿ”Ž</h1>"""

    #display message for themes feature
    theme_addon_msg = """<center>๐ŸŒŸ he swarm of agents combines a huge number of parallel agents divided into roles, including examiners, QA, evaluators, managers, analytics, and googlers. 
    <br>๐Ÿ†The agents use smart task decomposition and optimization processes to ensure accurate and efficient research on any topic.๐ŸŽจ</center>
    """

    #Using info to add additional information about System message in GPT4
    system_msg_info = """Swarm pre-configured for best practices using whitelists of top internet resources'"""

    #Modifying existing Gradio Theme
    theme = gr.themes.Soft(primary_hue="zinc", secondary_hue="green", neutral_hue="green",
                        text_size=gr.themes.sizes.text_lg)                

    with gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;} #chatbot {height: 520px; overflow: auto;}""",
                        theme=theme) as demo:
        gr.HTML(title)
        gr.HTML("""<h3 align="center">๐Ÿ”ฅUsing a swarm of automated agents, we can perform fast and accurate research on any topic. ๐Ÿš€๐Ÿ. ๐ŸŽ‰๐Ÿฅณ๐ŸŽ‰You don't need to spent tons of hours during reseachy๐Ÿ™Œ</h1>""")
        gr.HTML(theme_addon_msg)
        gr.HTML('''<center><a href="https://huggingface.co./spaces/swarm-agents/swarm-agents?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space and run securely with your OpenAI API Key</center>''')

        with gr.Column(elem_id = "col_container"):
            #GPT4 API Key is provided by Huggingface 
            with gr.Accordion(label="Swarm Setup:", open=False):
                system_msg = gr.Textbox(label="Instruct the AI Assistant to set its beaviour", info = system_msg_info, value="")
                accordion_msg = gr.HTML(value="๐Ÿšง To set System message you will have to refresh the app", visible=False)
            chatbot = gr.Chatbot(label='Swarm Intelligence Search', elem_id="chatbot")
            inputs = gr.Textbox(placeholder= "Enter your search query here...", label= "Type an input and press Enter")
            state = gr.State([]) 
            with gr.Row():
                with gr.Column(scale=7):
                    b1 = gr.Button().style(full_width=True)
                with gr.Column(scale=3):
                    server_status_code = gr.Textbox(label="Status code from OpenAI server", )
        
            #top_p, temperature
            with gr.Accordion("Parameters", open=False):
                top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
                temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",)
                chat_counter = gr.Number(value=0, visible=False, precision=0)

        #Event handling
        inputs.submit( predict, [system_msg, inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code],)  #openai_api_key
        b1.click( predict, [system_msg, inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code],)  #openai_api_key
        
        inputs.submit(set_visible_false, [], [system_msg])
        b1.click(set_visible_false, [], [system_msg])
        inputs.submit(set_visible_true, [], [accordion_msg])
        b1.click(set_visible_true, [], [accordion_msg])
        
        b1.click(reset_textbox, [], [inputs])
        inputs.submit(reset_textbox, [], [inputs])

    return demo