Spaces:
Sleeping
Sleeping
# from pydantic import NoneStr | |
import os | |
import mimetypes | |
# import validators | |
import requests | |
import tempfile | |
import gradio as gr | |
from openai import AzureOpenAI | |
import re | |
import json | |
from transformers import pipeline | |
import matplotlib.pyplot as plt | |
import plotly.express as px | |
import pandas as pd | |
import json | |
import plotly.graph_objects as go | |
client = AzureOpenAI(api_key=os.getenv("AZURE_OPENAI_KEY"), | |
api_version="2023-07-01-preview", | |
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT") | |
) | |
class SentimentAnalyzer: | |
def __init__(self): | |
pass | |
def emotion_analysis(self,text): | |
# Create a conversation for the OpenAI chat API | |
conversation = [ | |
{"role": "system", "content": "You are a helpful assistant."}, | |
{"role": "user", "content": f""" Your task is find the emotions for this converstion. | |
Conversation: {text} | |
lables : [Sadness, Happiness, Fear, Anger] | |
provide emotion score for each label for given conversation. | |
Return answer should be in valid JSON format only. | |
"""} | |
] | |
# Call OpenAI GPT-3.5-turbo | |
chat_completion = client.chat.completions.create( | |
model = "GPT-3", | |
messages = conversation, | |
max_tokens=500, | |
temperature=0 | |
) | |
response = chat_completion.choices[0].message.content | |
print("emotion_analysis", response) | |
return response | |
def analyze_sentiment_for_graph(self, text): | |
# Create a conversation for the OpenAI chat API | |
conversation = [ | |
{"role": "system", "content": "You are a helpful assistant."}, | |
{"role": "user", "content": f""" Your task is analyse the conversarion to provide the sentiment analysis. | |
```converstion: {text}``` | |
```labels :[ positive, negative, neutral]``` | |
provide sentiment score for each label for given conversation. Return answer should be in valid JSON format only. | |
"""} | |
] | |
# Call OpenAI GPT-3.5-turbo | |
chat_completion = client.chat.completions.create( | |
model = "GPT-3", | |
messages = conversation, | |
max_tokens=500, | |
temperature=0 | |
) | |
response = chat_completion.choices[0].message.content | |
print("analyze_sentiment_for_graph", response) | |
return response | |
class Summarizer: | |
def __init__(self): | |
# openai.api_key=os.getenv("OPENAI_API_KEY") | |
pass | |
def generate_summary(self, text): | |
# Create a conversation for the OpenAI chat API | |
conversation = [ | |
{"role": "system", "content": "You are a helpful assistant."}, | |
{"role": "user", "content": f"""summarize the following conversation delimited by triple backticks. write within 60 words.```{text}``` """} | |
] | |
# Call OpenAI GPT-3.5-turbo | |
chat_completion = client.chat.completions.create( | |
model = "GPT-3", | |
messages = conversation, | |
max_tokens=500, | |
temperature=0 | |
) | |
response = chat_completion.choices[0].message.content | |
return response | |
history_state = gr.State() | |
summarizer = Summarizer() | |
sentiment = SentimentAnalyzer() | |
class LangChain_Document_QA: | |
def __init__(self): | |
# openai.api_key=os.getenv("OPENAI_API_KEY") | |
pass | |
def _display_history(self): | |
formatted_history=self._chat_history() | |
# formatted_history = _suggested_answer() | |
summary=summarizer.generate_summary(formatted_history) | |
return summary | |
def _display_graph(self,json_string): | |
# Parse the JSON string into a dictionary | |
json_data = json.loads(json_string) | |
sentiments = list(json_data.keys()) | |
scores = list(json_data.values()) | |
fig = go.Figure(data=[go.Bar(x=sentiments, y=scores, marker_color=['green', 'red', 'blue'])]) | |
fig.update_layout( | |
title='Sentiment Analysis Scores', | |
xaxis=dict(title='Sentiment'), | |
yaxis=dict(title='Score'), | |
) | |
return fig | |
def _display_graph_emotion(self,json_string): | |
# Parse the JSON string into a dictionary | |
json_data = json.loads(json_string) | |
sentiments = list(json_data.keys()) | |
scores = list(json_data.values()) | |
fig = go.Figure(data=[go.Bar(x=sentiments, y=scores, marker_color=['green', 'red', 'blue'])]) | |
fig.update_layout( | |
title='Emotion Analysis Scores', | |
xaxis=dict(title='Emotions'), | |
yaxis=dict(title='Score'), | |
) | |
return fig | |
def _suggested_answer(self, text, chat_history): | |
try: | |
file_path = "patient_details.json" | |
with open(file_path) as file: | |
patient_details = json.load(file) | |
except: | |
pass | |
# Create a conversation for the OpenAI chat API | |
conversation = [ | |
{"role": "system", "content": "You are a Mental Healthcare Chatbot."}, | |
{"role": "user", "content": f"""You are a Mental Healthcare Chatbot. | |
Ask more about the patient's problem as step by step. | |
Then give the short mental healthcare solution for patient's problems. | |
```Chat History:{chat_history}``` | |
Patient Query:{text}. | |
Mental Healthcare Chatbot: | |
"""} | |
] | |
# Call OpenAI GPT-3.5-turbo | |
chat_completion = client.chat.completions.create( | |
model = "GPT-3", | |
messages = conversation, | |
max_tokens=300, | |
temperature=0 | |
) | |
response = chat_completion.choices[0].message.content | |
chat_history.append((text, response)) | |
return "", chat_history | |
def _on_sentiment_btn_click(self, history): | |
# client=self._history_of_chat() | |
customer_emotion=sentiment.emotion_analysis(history) | |
customer_sentiment_score = sentiment.analyze_sentiment_for_graph(history) | |
sentiment_graph = self._display_graph(customer_sentiment_score) | |
emotion_graph = self._display_graph_emotion(customer_emotion) | |
return sentiment_graph, emotion_graph | |
def gradio_interface(self): | |
with gr.Blocks(css="style.css",theme='JohnSmith9982/small_and_pretty') as demo: | |
with gr.Row(): | |
gr.HTML("""<center></center> | |
""") | |
with gr.Row(): | |
gr.HTML("""<center><h1>AI Mental Healthcare ChatBot</h1></center>""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Row(): | |
chatbot = gr.Chatbot() | |
with gr.Row(): | |
with gr.Column(scale=0.90): | |
txt = gr.Textbox(show_label=False,placeholder="Patient") | |
with gr.Column(scale=0.10): | |
emptyBtn = gr.ClearButton([txt, chatbot]) | |
# emptyBtn = gr.Button() | |
with gr.Accordion("Conversational AI Analytics", open = False): | |
with gr.Row(): | |
with gr.Column(scale=1.0): | |
txt4 =gr.Textbox( | |
show_label=False, | |
lines=4, | |
placeholder="Summary") | |
with gr.Row(): | |
with gr.Column(scale=0.50, min_width=0): | |
end_btn=gr.Button(value="End") | |
with gr.Column(scale=0.50, min_width=0): | |
Sentiment_btn=gr.Button(value="📊") | |
with gr.Row(): | |
gr.HTML("""<center><h1>Sentiment and Emotion Score Graph</h1></center>""") | |
with gr.Row(): | |
with gr.Column(scale=1, min_width=0): | |
plot =gr.Plot(label="Patient") | |
with gr.Row(): | |
with gr.Column(scale=1, min_width=0): | |
plot_3 =gr.Plot(label="Patient_Emotion") | |
# txt_msg = txt.submit(self._add_text, [chatbot, txt], [chatbot, txt]).then( | |
# self._suggested_answer, [chatbot,txt],chatbot) | |
# txt_msg.then(lambda: gr.update(interactive=True), None, [txt]) | |
# txt.submit(self._suggested_answer, [chatbot,txt],chatbot) | |
# button.click(self._agent_text, [chatbot,txt3], chatbot) | |
txt.submit(self._suggested_answer, [txt,chatbot],[txt,chatbot]) | |
print("chatbot", chatbot) | |
end_btn.click(summarizer.generate_summary,chatbot, txt4) | |
# emptyBtn.click(self.clear_func,[],[]) | |
# emptyBtn.click(lambda: None, None, chatbot, queue=False) | |
Sentiment_btn.click(self._on_sentiment_btn_click,chatbot,[plot,plot_3]) | |
demo.title = "AI Mental Healthcare ChatBot" | |
demo.launch(debug = True) | |
document_qa =LangChain_Document_QA() | |
document_qa.gradio_interface() |