Spaces:
Sleeping
Sleeping
File size: 9,098 Bytes
01f29ca f05d9b7 01f29ca 0518baf 01f29ca 31bd8d8 f05d9b7 01f29ca bb5f283 0518baf bb5f283 7852b97 bb5f283 01f29ca bb5f283 0518baf bb5f283 01f29ca bb5f283 0518baf bb5f283 7852b97 bb5f283 01f29ca bb5f283 0518baf bb5f283 01f29ca bb5f283 0518baf bb5f283 7852b97 bb5f283 01f29ca bb5f283 01f29ca 0518baf 01f29ca 0518baf 01f29ca 0518baf 01f29ca 0518baf 01f29ca bb5f283 0518baf bb5f283 7852b97 bb5f283 0518baf bb5f283 01f29ca bb5f283 0518baf 01f29ca 0518baf 01f29ca 0518baf 01f29ca 0518baf 01f29ca 7b3aa96 01f29ca 0518baf 01f29ca 0518baf 01f29ca 0518baf 01f29ca 0518baf 01f29ca 0518baf 01f29ca 0518baf 01f29ca 0518baf 01f29ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
# from pydantic import NoneStr
import os
import mimetypes
# import validators
import requests
import tempfile
import gradio as gr
from openai import AzureOpenAI
import re
import json
from transformers import pipeline
import matplotlib.pyplot as plt
import plotly.express as px
import pandas as pd
import json
import plotly.graph_objects as go
client = AzureOpenAI(api_key=os.getenv("AZURE_OPENAI_KEY"),
api_version="2023-07-01-preview",
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT")
)
class SentimentAnalyzer:
def __init__(self):
pass
def emotion_analysis(self,text):
# Create a conversation for the OpenAI chat API
conversation = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": f""" Your task is find the emotions for this converstion.
Conversation: {text}
lables : [Sadness, Happiness, Fear, Anger]
provide emotion score for each label for given conversation.
Return answer should be in valid JSON format only.
"""}
]
# Call OpenAI GPT-3.5-turbo
chat_completion = client.chat.completions.create(
model = "GPT-3",
messages = conversation,
max_tokens=500,
temperature=0
)
response = chat_completion.choices[0].message.content
print("emotion_analysis", response)
return response
def analyze_sentiment_for_graph(self, text):
# Create a conversation for the OpenAI chat API
conversation = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": f""" Your task is analyse the conversarion to provide the sentiment analysis.
```converstion: {text}```
```labels :[ positive, negative, neutral]```
provide sentiment score for each label for given conversation. Return answer should be in valid JSON format only.
"""}
]
# Call OpenAI GPT-3.5-turbo
chat_completion = client.chat.completions.create(
model = "GPT-3",
messages = conversation,
max_tokens=500,
temperature=0
)
response = chat_completion.choices[0].message.content
print("analyze_sentiment_for_graph", response)
return response
class Summarizer:
def __init__(self):
# openai.api_key=os.getenv("OPENAI_API_KEY")
pass
def generate_summary(self, text):
# Create a conversation for the OpenAI chat API
conversation = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": f"""summarize the following conversation delimited by triple backticks. write within 60 words.```{text}``` """}
]
# Call OpenAI GPT-3.5-turbo
chat_completion = client.chat.completions.create(
model = "GPT-3",
messages = conversation,
max_tokens=500,
temperature=0
)
response = chat_completion.choices[0].message.content
return response
history_state = gr.State()
summarizer = Summarizer()
sentiment = SentimentAnalyzer()
class LangChain_Document_QA:
def __init__(self):
# openai.api_key=os.getenv("OPENAI_API_KEY")
pass
def _display_history(self):
formatted_history=self._chat_history()
# formatted_history = _suggested_answer()
summary=summarizer.generate_summary(formatted_history)
return summary
def _display_graph(self,json_string):
# Parse the JSON string into a dictionary
json_data = json.loads(json_string)
sentiments = list(json_data.keys())
scores = list(json_data.values())
fig = go.Figure(data=[go.Bar(x=sentiments, y=scores, marker_color=['green', 'red', 'blue'])])
fig.update_layout(
title='Sentiment Analysis Scores',
xaxis=dict(title='Sentiment'),
yaxis=dict(title='Score'),
)
return fig
def _display_graph_emotion(self,json_string):
# Parse the JSON string into a dictionary
json_data = json.loads(json_string)
sentiments = list(json_data.keys())
scores = list(json_data.values())
fig = go.Figure(data=[go.Bar(x=sentiments, y=scores, marker_color=['green', 'red', 'blue'])])
fig.update_layout(
title='Emotion Analysis Scores',
xaxis=dict(title='Emotions'),
yaxis=dict(title='Score'),
)
return fig
def _suggested_answer(self, text, chat_history):
try:
file_path = "patient_details.json"
with open(file_path) as file:
patient_details = json.load(file)
except:
pass
# Create a conversation for the OpenAI chat API
conversation = [
{"role": "system", "content": "You are a Mental Healthcare Chatbot."},
{"role": "user", "content": f"""You are a Mental Healthcare Chatbot.
Ask more about the patient's problem as step by step.
Then give the short mental healthcare solution for patient's problems.
```Chat History:{chat_history}```
Patient Query:{text}.
Mental Healthcare Chatbot:
"""}
]
# Call OpenAI GPT-3.5-turbo
chat_completion = client.chat.completions.create(
model = "GPT-3",
messages = conversation,
max_tokens=300,
temperature=0
)
response = chat_completion.choices[0].message.content
chat_history.append((text, response))
return "", chat_history
def _on_sentiment_btn_click(self, history):
# client=self._history_of_chat()
customer_emotion=sentiment.emotion_analysis(history)
customer_sentiment_score = sentiment.analyze_sentiment_for_graph(history)
sentiment_graph = self._display_graph(customer_sentiment_score)
emotion_graph = self._display_graph_emotion(customer_emotion)
return sentiment_graph, emotion_graph
def gradio_interface(self):
with gr.Blocks(css="style.css",theme='JohnSmith9982/small_and_pretty') as demo:
with gr.Row():
gr.HTML("""<center></center>
""")
with gr.Row():
gr.HTML("""<center><h1>AI Mental Healthcare ChatBot</h1></center>""")
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=0.90):
txt = gr.Textbox(show_label=False,placeholder="Patient")
with gr.Column(scale=0.10):
emptyBtn = gr.ClearButton([txt, chatbot])
# emptyBtn = gr.Button()
with gr.Accordion("Conversational AI Analytics", open = False):
with gr.Row():
with gr.Column(scale=1.0):
txt4 =gr.Textbox(
show_label=False,
lines=4,
placeholder="Summary")
with gr.Row():
with gr.Column(scale=0.50, min_width=0):
end_btn=gr.Button(value="End")
with gr.Column(scale=0.50, min_width=0):
Sentiment_btn=gr.Button(value="📊")
with gr.Row():
gr.HTML("""<center><h1>Sentiment and Emotion Score Graph</h1></center>""")
with gr.Row():
with gr.Column(scale=1, min_width=0):
plot =gr.Plot(label="Patient")
with gr.Row():
with gr.Column(scale=1, min_width=0):
plot_3 =gr.Plot(label="Patient_Emotion")
# txt_msg = txt.submit(self._add_text, [chatbot, txt], [chatbot, txt]).then(
# self._suggested_answer, [chatbot,txt],chatbot)
# txt_msg.then(lambda: gr.update(interactive=True), None, [txt])
# txt.submit(self._suggested_answer, [chatbot,txt],chatbot)
# button.click(self._agent_text, [chatbot,txt3], chatbot)
txt.submit(self._suggested_answer, [txt,chatbot],[txt,chatbot])
print("chatbot", chatbot)
end_btn.click(summarizer.generate_summary,chatbot, txt4)
# emptyBtn.click(self.clear_func,[],[])
# emptyBtn.click(lambda: None, None, chatbot, queue=False)
Sentiment_btn.click(self._on_sentiment_btn_click,chatbot,[plot,plot_3])
demo.title = "AI Mental Healthcare ChatBot"
demo.launch(debug = True)
document_qa =LangChain_Document_QA()
document_qa.gradio_interface() |