File size: 9,098 Bytes
01f29ca
 
 
 
 
 
 
f05d9b7
01f29ca
 
 
 
 
0518baf
 
 
01f29ca
31bd8d8
f05d9b7
 
 
01f29ca
 
 
 
 
 
bb5f283
 
 
0518baf
 
 
 
 
bb5f283
 
 
 
 
7852b97
bb5f283
 
 
01f29ca
bb5f283
 
0518baf
bb5f283
 
01f29ca
 
bb5f283
 
 
 
0518baf
 
 
 
bb5f283
 
 
 
 
7852b97
bb5f283
 
 
01f29ca
bb5f283
 
0518baf
 
bb5f283
01f29ca
 
 
 
 
 
 
bb5f283
 
 
 
0518baf
bb5f283
 
 
 
7852b97
bb5f283
 
 
01f29ca
bb5f283
 
 
 
01f29ca
 
 
 
 
 
 
 
 
 
 
 
 
0518baf
01f29ca
 
 
0518baf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01f29ca
0518baf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01f29ca
0518baf
 
 
 
01f29ca
 
 
 
 
 
bb5f283
 
 
0518baf
 
 
 
 
 
 
 
 
 
 
 
bb5f283
 
 
 
7852b97
bb5f283
0518baf
bb5f283
01f29ca
bb5f283
 
 
0518baf
 
 
01f29ca
 
0518baf
 
01f29ca
0518baf
 
 
01f29ca
0518baf
 
 
 
 
01f29ca
 
 
 
 
7b3aa96
01f29ca
 
 
 
 
 
0518baf
01f29ca
 
 
 
0518baf
 
01f29ca
 
 
0518baf
01f29ca
 
 
 
0518baf
01f29ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0518baf
 
 
01f29ca
 
0518baf
 
 
 
 
 
 
01f29ca
0518baf
01f29ca
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# from pydantic import NoneStr
import os
import mimetypes
# import validators
import requests
import tempfile
import gradio as gr
from openai import AzureOpenAI
import re
import json
from transformers import pipeline
import matplotlib.pyplot as plt
import plotly.express as px
import pandas as pd
import json
import plotly.graph_objects as go

client = AzureOpenAI(api_key=os.getenv("AZURE_OPENAI_KEY"),  
                            api_version="2023-07-01-preview",
                            azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT")
                             )

class SentimentAnalyzer:
    def __init__(self):
       pass

    def emotion_analysis(self,text):
        # Create a conversation for the OpenAI chat API
        conversation = [
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": f""" Your task is find the emotions for this converstion.
            Conversation: {text}
            lables : [Sadness, Happiness, Fear, Anger]     
            provide emotion score for each label for given conversation. 
            Return answer should be in valid JSON format only. 
        """}
        ]
        
        # Call OpenAI GPT-3.5-turbo
        chat_completion = client.chat.completions.create(
            model = "GPT-3",
            messages = conversation,
            max_tokens=500,
            temperature=0
        )
        
        response = chat_completion.choices[0].message.content
        print("emotion_analysis", response)
        return response


    def analyze_sentiment_for_graph(self, text):

        # Create a conversation for the OpenAI chat API
        conversation = [
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": f""" Your task is analyse the conversarion to provide the sentiment analysis. 
            ```converstion: {text}``` 
            ```labels :[ positive, negative, neutral]```
           provide sentiment score for each label for given conversation. Return answer should be in valid JSON format only.
        """}
        ]
        
        # Call OpenAI GPT-3.5-turbo
        chat_completion = client.chat.completions.create(
            model = "GPT-3",
            messages = conversation,
            max_tokens=500,
            temperature=0
        )
        
        response = chat_completion.choices[0].message.content
        print("analyze_sentiment_for_graph", response)
        return response 
        


class Summarizer:
    def __init__(self):
        # openai.api_key=os.getenv("OPENAI_API_KEY")
        pass
    def generate_summary(self, text):

        # Create a conversation for the OpenAI chat API
        conversation = [
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": f"""summarize the following conversation delimited by triple backticks. write within 60 words.```{text}``` """}
        ]
        
        # Call OpenAI GPT-3.5-turbo
        chat_completion = client.chat.completions.create(
            model = "GPT-3",
            messages = conversation,
            max_tokens=500,
            temperature=0
        )
        
        response = chat_completion.choices[0].message.content
        return response
        

history_state = gr.State()
summarizer = Summarizer()
sentiment = SentimentAnalyzer()

class LangChain_Document_QA:

    def __init__(self):
        # openai.api_key=os.getenv("OPENAI_API_KEY")
        pass

    def _display_history(self):
        formatted_history=self._chat_history()
        # formatted_history = _suggested_answer()
        summary=summarizer.generate_summary(formatted_history)
        return summary

    def _display_graph(self,json_string):
        # Parse the JSON string into a dictionary
        json_data = json.loads(json_string)

        sentiments = list(json_data.keys())
        scores = list(json_data.values())

        fig = go.Figure(data=[go.Bar(x=sentiments, y=scores, marker_color=['green', 'red', 'blue'])])

        fig.update_layout(
            title='Sentiment Analysis Scores',
            xaxis=dict(title='Sentiment'),
            yaxis=dict(title='Score'),
        )

        return fig

    def _display_graph_emotion(self,json_string):
        # Parse the JSON string into a dictionary
        json_data = json.loads(json_string)

        sentiments = list(json_data.keys())
        scores = list(json_data.values())

        fig = go.Figure(data=[go.Bar(x=sentiments, y=scores, marker_color=['green', 'red', 'blue'])])

        fig.update_layout(
            title='Emotion Analysis Scores',
            xaxis=dict(title='Emotions'),
            yaxis=dict(title='Score'),
        )

        return fig


    def _suggested_answer(self, text, chat_history):

        try:
          file_path = "patient_details.json"
          with open(file_path) as file:
              patient_details = json.load(file)
        except:
          pass
            
        # Create a conversation for the OpenAI chat API
        conversation = [
            {"role": "system", "content": "You are a Mental Healthcare Chatbot."},
            {"role": "user", "content": f"""You are a Mental Healthcare Chatbot. 
            Ask more about the patient's problem as step by step.
            Then give the short mental healthcare solution for patient's problems.

            ```Chat History:{chat_history}```

            Patient Query:{text}.
            Mental Healthcare Chatbot:

            
            """}
        ]
        
        # Call OpenAI GPT-3.5-turbo
        chat_completion = client.chat.completions.create(
            model = "GPT-3",
            messages = conversation,
            max_tokens=300,
            temperature=0
        )
        
        response = chat_completion.choices[0].message.content
        
        chat_history.append((text, response))
        
        return "", chat_history


    def _on_sentiment_btn_click(self, history):
        # client=self._history_of_chat()

        customer_emotion=sentiment.emotion_analysis(history)
        
        customer_sentiment_score = sentiment.analyze_sentiment_for_graph(history)

        sentiment_graph = self._display_graph(customer_sentiment_score)
 
        emotion_graph = self._display_graph_emotion(customer_emotion)
        
        return sentiment_graph, emotion_graph


    def gradio_interface(self):
      with gr.Blocks(css="style.css",theme='JohnSmith9982/small_and_pretty') as demo:
          with gr.Row():
            gr.HTML("""<center></center>
            """)
          with gr.Row():
               gr.HTML("""<center><h1>AI Mental Healthcare ChatBot</h1></center>""")
          with gr.Row():
              with gr.Column(scale=1):
                  with gr.Row():
                      chatbot = gr.Chatbot()
                  with gr.Row():
                      with gr.Column(scale=0.90):
                          txt = gr.Textbox(show_label=False,placeholder="Patient")
                      with gr.Column(scale=0.10):
                          emptyBtn = gr.ClearButton([txt, chatbot])
                          # emptyBtn = gr.Button()

          with gr.Accordion("Conversational AI Analytics", open = False):
              with gr.Row():
                  with gr.Column(scale=1.0):
                      txt4 =gr.Textbox(
                          show_label=False,
                          lines=4,
                          placeholder="Summary")

              with gr.Row():
                  with gr.Column(scale=0.50, min_width=0):
                      end_btn=gr.Button(value="End")
                  with gr.Column(scale=0.50, min_width=0):
                      Sentiment_btn=gr.Button(value="📊")
              with gr.Row():
                  gr.HTML("""<center><h1>Sentiment and Emotion Score Graph</h1></center>""")
              with gr.Row():
                  with gr.Column(scale=1, min_width=0):
                      plot =gr.Plot(label="Patient")
              with gr.Row():
                  with gr.Column(scale=1, min_width=0):
                      plot_3 =gr.Plot(label="Patient_Emotion")


        #   txt_msg = txt.submit(self._add_text, [chatbot, txt], [chatbot, txt]).then(
        # self._suggested_answer, [chatbot,txt],chatbot)
        #   txt_msg.then(lambda: gr.update(interactive=True), None, [txt])
          # txt.submit(self._suggested_answer, [chatbot,txt],chatbot)
          # button.click(self._agent_text, [chatbot,txt3], chatbot)
 
          txt.submit(self._suggested_answer, [txt,chatbot],[txt,chatbot])
          print("chatbot", chatbot)

          end_btn.click(summarizer.generate_summary,chatbot, txt4)
          # emptyBtn.click(self.clear_func,[],[])
          # emptyBtn.click(lambda: None, None, chatbot, queue=False)

          Sentiment_btn.click(self._on_sentiment_btn_click,chatbot,[plot,plot_3])
 
      demo.title = "AI Mental Healthcare ChatBot"
      demo.launch(debug = True)
document_qa =LangChain_Document_QA()
document_qa.gradio_interface()