Spaces:
Sleeping
Sleeping
robertselvam
commited on
Commit
•
01f29ca
1
Parent(s):
960ea29
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from pydantic import NoneStr
|
2 |
+
import os
|
3 |
+
import mimetypes
|
4 |
+
# import validators
|
5 |
+
import requests
|
6 |
+
import tempfile
|
7 |
+
import gradio as gr
|
8 |
+
from openai import OpenAI
|
9 |
+
import re
|
10 |
+
import json
|
11 |
+
from transformers import pipeline
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
import plotly.express as px
|
14 |
+
import pandas as pd
|
15 |
+
|
16 |
+
client = OpenAI()
|
17 |
+
|
18 |
+
class SentimentAnalyzer:
|
19 |
+
def __init__(self):
|
20 |
+
pass
|
21 |
+
|
22 |
+
def emotion_analysis(self,text):
|
23 |
+
prompt = f""" Your task is find the top 3 emotion for this converstion {text}: <Sadness, Happiness, Fear, Disgust, Anger> and it's emotion score for the Mental Healthcare Doctor Chatbot and patient conversation text.\
|
24 |
+
you are analyze the text and provide the output in the following list format heigher to lower order: ["emotion1","emotion2","emotion3"][score1,score2,score3]''' [with top 3 result having the highest score]
|
25 |
+
The scores should be in the range of 0.0 to 1.0, where 1.0 represents the highest intensity of the emotion.
|
26 |
+
"""
|
27 |
+
response = client.completions.create(
|
28 |
+
model="text-davinci-003",
|
29 |
+
prompt=prompt,
|
30 |
+
temperature=0,
|
31 |
+
max_tokens=60,
|
32 |
+
top_p=1,
|
33 |
+
frequency_penalty=0,
|
34 |
+
presence_penalty=0
|
35 |
+
)
|
36 |
+
message = response.choices[0].text
|
37 |
+
return message
|
38 |
+
|
39 |
+
def analyze_sentiment_for_graph(self, text):
|
40 |
+
prompt = f""" Your task is find the setiments for this converstion {text} : <labels = positive, negative, neutral> and it's sentiment score for the Mental Healthcare Doctor Chatbot and patient conversation text.\
|
41 |
+
you are analyze the text and provide the output in the following json format heigher to lower order: '''["label1","label2","label3"][score1,score2,score3]'''
|
42 |
+
"""
|
43 |
+
response = client.completions.create(
|
44 |
+
model="text-davinci-003",
|
45 |
+
prompt=prompt,
|
46 |
+
temperature=0,
|
47 |
+
max_tokens=60,
|
48 |
+
top_p=1,
|
49 |
+
frequency_penalty=0,
|
50 |
+
presence_penalty=0
|
51 |
+
)
|
52 |
+
|
53 |
+
# Extract the generated text
|
54 |
+
sentiment_scores = response.choices[0].text.strip()
|
55 |
+
start_index = sentiment_scores.find("[")
|
56 |
+
end_index = sentiment_scores.find("]")
|
57 |
+
list1_text = sentiment_scores[start_index + 1: end_index]
|
58 |
+
list2_text = sentiment_scores[end_index + 2:-1]
|
59 |
+
sentiment = list(map(str.strip, list1_text.split(",")))
|
60 |
+
scores = list(map(float, list2_text.split(",")))
|
61 |
+
score_dict={"Sentiment": sentiment, "Score": scores}
|
62 |
+
print(score_dict)
|
63 |
+
return score_dict
|
64 |
+
|
65 |
+
def emotion_analysis_for_graph(self,text):
|
66 |
+
start_index = text.find("[")
|
67 |
+
end_index = text.find("]")
|
68 |
+
list1_text = text[start_index + 1: end_index]
|
69 |
+
list2_text = text[end_index + 2:-1]
|
70 |
+
emotions = list(map(str.strip, list1_text.split(",")))
|
71 |
+
scores = list(map(float, list2_text.split(",")))
|
72 |
+
score_dict={"Emotion": emotions, "Score": scores}
|
73 |
+
print(score_dict)
|
74 |
+
return score_dict
|
75 |
+
|
76 |
+
|
77 |
+
class Summarizer:
|
78 |
+
def __init__(self):
|
79 |
+
# openai.api_key=os.getenv("OPENAI_API_KEY")
|
80 |
+
pass
|
81 |
+
def generate_summary(self, text):
|
82 |
+
model_engine = "text-davinci-003"
|
83 |
+
prompt = f"""summarize the following conversation delimited by triple backticks. write within 30 words.```{text}``` """
|
84 |
+
completions = client.completions.create(
|
85 |
+
engine=model_engine,
|
86 |
+
prompt=prompt,
|
87 |
+
max_tokens=60,
|
88 |
+
n=1,
|
89 |
+
stop=None,
|
90 |
+
temperature=0.5,
|
91 |
+
)
|
92 |
+
message = completions.choices[0].text.strip()
|
93 |
+
return message
|
94 |
+
|
95 |
+
history_state = gr.State()
|
96 |
+
summarizer = Summarizer()
|
97 |
+
sentiment = SentimentAnalyzer()
|
98 |
+
|
99 |
+
class LangChain_Document_QA:
|
100 |
+
|
101 |
+
def __init__(self):
|
102 |
+
# openai.api_key=os.getenv("OPENAI_API_KEY")
|
103 |
+
pass
|
104 |
+
|
105 |
+
def _add_text(self,history, text):
|
106 |
+
history = history + [(text, None)]
|
107 |
+
history_state.value = history
|
108 |
+
return history,gr.update(value="", interactive=False)
|
109 |
+
|
110 |
+
def _agent_text(self,history, text):
|
111 |
+
response = text
|
112 |
+
history[-1][1] = response
|
113 |
+
history_state.value = history
|
114 |
+
return history
|
115 |
+
|
116 |
+
def _chat_history(self):
|
117 |
+
history = history_state.value
|
118 |
+
formatted_history = " "
|
119 |
+
for entry in history:
|
120 |
+
customer_text, agent_text = entry
|
121 |
+
formatted_history += f"Patient: {customer_text}\n"
|
122 |
+
if agent_text:
|
123 |
+
formatted_history += f"Mental Healthcare Doctor Chatbot: {agent_text}\n"
|
124 |
+
return formatted_history
|
125 |
+
|
126 |
+
def _display_history(self):
|
127 |
+
formatted_history=self._chat_history()
|
128 |
+
summary=summarizer.generate_summary(formatted_history)
|
129 |
+
return summary
|
130 |
+
|
131 |
+
def _display_graph(self,sentiment_scores):
|
132 |
+
df = pd.DataFrame(sentiment_scores)
|
133 |
+
fig = px.bar(df, x='Score', y='Sentiment', orientation='h', labels={'Score': 'Score', 'Labels': 'Sentiment'})
|
134 |
+
fig.update_layout(height=500, width=200)
|
135 |
+
return fig
|
136 |
+
def _display_graph_emotion(self,customer_emotion_score):
|
137 |
+
|
138 |
+
fig = px.pie(customer_emotion_score, values='Score', names='Emotion', title='Emotion Distribution', hover_data=['Score'])
|
139 |
+
#fig.update_traces(texttemplate='Emotion', textposition='outside')
|
140 |
+
fig.update_layout(height=500, width=200)
|
141 |
+
return fig
|
142 |
+
def _history_of_chat(self):
|
143 |
+
history = history_state.value
|
144 |
+
formatted_history = ""
|
145 |
+
client=""
|
146 |
+
agent=""
|
147 |
+
for entry in history:
|
148 |
+
customer_text, agent_text = entry
|
149 |
+
client+=customer_text
|
150 |
+
formatted_history += f"Patient: {customer_text}\n"
|
151 |
+
if agent_text:
|
152 |
+
agent+=agent_text
|
153 |
+
formatted_history += f"Mental Healthcare Doctor Chatbot: {agent_text}\n"
|
154 |
+
return client,agent
|
155 |
+
|
156 |
+
|
157 |
+
def _suggested_answer(self,history, text):
|
158 |
+
# try:
|
159 |
+
history_list = self._chat_history()
|
160 |
+
try:
|
161 |
+
file_path = "patient_details.json"
|
162 |
+
with open(file_path) as file:
|
163 |
+
patient_details = json.load(file)
|
164 |
+
except:
|
165 |
+
pass
|
166 |
+
|
167 |
+
prompt = f"""Analyse the patient json If asked for information take it from {patient_details} \
|
168 |
+
you first get patient details : <get name,age,gender,contact,address from patient> if not match patient json information start new chat else match patient \
|
169 |
+
json information ask previous: <description,symptoms,diagnosis,treatment talk about patient> As an empathic AI Mental Healthcare Doctor Chatbot, provide effective solutions to patients' mental health concerns. \
|
170 |
+
first start the conversation ask existing patient or new patient. if new patient get name,age,gender,contact,address from the patient and start. \
|
171 |
+
if existing customer get name,age,gender,contact,address details and start the chat about existing issues and current issues. \
|
172 |
+
if patient say thanking tone message to end the conversation with a thanking greeting when the patient expresses gratitude. \
|
173 |
+
Chat History:['''{history_list}''']
|
174 |
+
Patient: ['''{text}''']
|
175 |
+
Perform as Mental Healthcare Doctor Chatbot
|
176 |
+
"""
|
177 |
+
response = client.completions.create(
|
178 |
+
model="text-davinci-003",
|
179 |
+
prompt=prompt,
|
180 |
+
temperature=0,
|
181 |
+
max_tokens=500,
|
182 |
+
top_p=1,
|
183 |
+
frequency_penalty=0,
|
184 |
+
presence_penalty=0.6,
|
185 |
+
)
|
186 |
+
|
187 |
+
message = response.choices[0].text.strip()
|
188 |
+
if ":" in message:
|
189 |
+
message = re.sub(r'^.*:', '', message)
|
190 |
+
history[-1][1] = message.strip()
|
191 |
+
history_state.value = history
|
192 |
+
return history
|
193 |
+
# except:
|
194 |
+
# history[-1][1] = "How can I help you?"
|
195 |
+
# history_state.value = history
|
196 |
+
# return history
|
197 |
+
|
198 |
+
|
199 |
+
def _text_box(self,customer_emotion,customer_sentiment_score):
|
200 |
+
sentiment_str = ', '.join([f'{label}: {score}' for label, score in zip(customer_sentiment_score['Sentiment'], customer_sentiment_score['Score'])])
|
201 |
+
#emotion_str = ', '.join([f'{emotion}: {score}' for emotion, score in zip(customer_emotion['Emotion'], customer_emotion['Score'])])
|
202 |
+
return f"Sentiment: {sentiment_str},\nEmotion: {customer_emotion}"
|
203 |
+
|
204 |
+
def _on_sentiment_btn_click(self):
|
205 |
+
client=self._history_of_chat()
|
206 |
+
|
207 |
+
customer_emotion=sentiment.emotion_analysis(client)
|
208 |
+
customer_sentiment_score = sentiment.analyze_sentiment_for_graph(client)
|
209 |
+
|
210 |
+
scores=self._text_box(customer_emotion,customer_sentiment_score)
|
211 |
+
|
212 |
+
customer_fig=self._display_graph(customer_sentiment_score)
|
213 |
+
customer_fig.update_layout(title="Sentiment Analysis",width=800)
|
214 |
+
|
215 |
+
customer_emotion_score = sentiment.emotion_analysis_for_graph(customer_emotion)
|
216 |
+
|
217 |
+
customer_emotion_fig=self._display_graph_emotion(customer_emotion_score)
|
218 |
+
customer_emotion_fig.update_layout(title="Emotion Analysis",width=800)
|
219 |
+
return scores,customer_fig,customer_emotion_fig
|
220 |
+
|
221 |
+
|
222 |
+
def clear_func(self):
|
223 |
+
history_state.clear()
|
224 |
+
|
225 |
+
def gradio_interface(self):
|
226 |
+
with gr.Blocks(css="style.css",theme='JohnSmith9982/small_and_pretty') as demo:
|
227 |
+
with gr.Row():
|
228 |
+
gr.HTML("""<center><img class="image" src="https://www.syrahealth.com/images/SyraHealth_Logo_Dark.svg" alt="Image" width="210" height="210"></center>
|
229 |
+
""")
|
230 |
+
with gr.Row():
|
231 |
+
gr.HTML("""<center><h1>AI Mental Healthcare ChatBot</h1></center>""")
|
232 |
+
with gr.Row():
|
233 |
+
with gr.Column(scale=1):
|
234 |
+
with gr.Row():
|
235 |
+
chatbot = gr.Chatbot([], elem_id="chatbot")
|
236 |
+
with gr.Row():
|
237 |
+
with gr.Column(scale=0.90):
|
238 |
+
txt = gr.Textbox(show_label=False,placeholder="Patient")
|
239 |
+
with gr.Column(scale=0.10):
|
240 |
+
emptyBtn = gr.Button("🧹 Clear")
|
241 |
+
|
242 |
+
with gr.Accordion("Conversational AI Analytics", open = False):
|
243 |
+
with gr.Row():
|
244 |
+
with gr.Column(scale=0.50):
|
245 |
+
txt4 =gr.Textbox(
|
246 |
+
show_label=False,
|
247 |
+
lines=4,
|
248 |
+
placeholder="Summary")
|
249 |
+
with gr.Column(scale=0.50):
|
250 |
+
txt5 =gr.Textbox(
|
251 |
+
show_label=False,
|
252 |
+
lines=4,
|
253 |
+
placeholder="Sentiment")
|
254 |
+
with gr.Row():
|
255 |
+
with gr.Column(scale=0.50, min_width=0):
|
256 |
+
end_btn=gr.Button(value="End")
|
257 |
+
with gr.Column(scale=0.50, min_width=0):
|
258 |
+
Sentiment_btn=gr.Button(value="📊")
|
259 |
+
with gr.Row():
|
260 |
+
gr.HTML("""<center><h1>Sentiment and Emotion Score Graph</h1></center>""")
|
261 |
+
with gr.Row():
|
262 |
+
with gr.Column(scale=1, min_width=0):
|
263 |
+
plot =gr.Plot(label="Patient")
|
264 |
+
with gr.Row():
|
265 |
+
with gr.Column(scale=1, min_width=0):
|
266 |
+
plot_3 =gr.Plot(label="Patient_Emotion")
|
267 |
+
|
268 |
+
|
269 |
+
txt_msg = txt.submit(self._add_text, [chatbot, txt], [chatbot, txt]).then(
|
270 |
+
self._suggested_answer, [chatbot,txt],chatbot)
|
271 |
+
txt_msg.then(lambda: gr.update(interactive=True), None, [txt])
|
272 |
+
# txt.submit(self._suggested_answer, [chatbot,txt],chatbot)
|
273 |
+
# button.click(self._agent_text, [chatbot,txt3], chatbot)
|
274 |
+
end_btn.click(self._display_history, [], txt4)
|
275 |
+
emptyBtn.click(self.clear_func,[],[])
|
276 |
+
emptyBtn.click(lambda: None, None, chatbot, queue=False)
|
277 |
+
|
278 |
+
Sentiment_btn.click(self._on_sentiment_btn_click,[],[txt5,plot,plot_3])
|
279 |
+
|
280 |
+
demo.title = "AI Mental Healthcare ChatBot"
|
281 |
+
demo.launch(debug = True)
|
282 |
+
document_qa =LangChain_Document_QA()
|
283 |
+
document_qa.gradio_interface()
|