Spaces:
Sleeping
Sleeping
File size: 11,886 Bytes
01f29ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
# from pydantic import NoneStr
import os
import mimetypes
# import validators
import requests
import tempfile
import gradio as gr
from openai import OpenAI
import re
import json
from transformers import pipeline
import matplotlib.pyplot as plt
import plotly.express as px
import pandas as pd
client = OpenAI()
class SentimentAnalyzer:
def __init__(self):
pass
def emotion_analysis(self,text):
prompt = f""" Your task is find the top 3 emotion for this converstion {text}: <Sadness, Happiness, Fear, Disgust, Anger> and it's emotion score for the Mental Healthcare Doctor Chatbot and patient conversation text.\
you are analyze the text and provide the output in the following list format heigher to lower order: ["emotion1","emotion2","emotion3"][score1,score2,score3]''' [with top 3 result having the highest score]
The scores should be in the range of 0.0 to 1.0, where 1.0 represents the highest intensity of the emotion.
"""
response = client.completions.create(
model="text-davinci-003",
prompt=prompt,
temperature=0,
max_tokens=60,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
message = response.choices[0].text
return message
def analyze_sentiment_for_graph(self, text):
prompt = f""" Your task is find the setiments for this converstion {text} : <labels = positive, negative, neutral> and it's sentiment score for the Mental Healthcare Doctor Chatbot and patient conversation text.\
you are analyze the text and provide the output in the following json format heigher to lower order: '''["label1","label2","label3"][score1,score2,score3]'''
"""
response = client.completions.create(
model="text-davinci-003",
prompt=prompt,
temperature=0,
max_tokens=60,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
# Extract the generated text
sentiment_scores = response.choices[0].text.strip()
start_index = sentiment_scores.find("[")
end_index = sentiment_scores.find("]")
list1_text = sentiment_scores[start_index + 1: end_index]
list2_text = sentiment_scores[end_index + 2:-1]
sentiment = list(map(str.strip, list1_text.split(",")))
scores = list(map(float, list2_text.split(",")))
score_dict={"Sentiment": sentiment, "Score": scores}
print(score_dict)
return score_dict
def emotion_analysis_for_graph(self,text):
start_index = text.find("[")
end_index = text.find("]")
list1_text = text[start_index + 1: end_index]
list2_text = text[end_index + 2:-1]
emotions = list(map(str.strip, list1_text.split(",")))
scores = list(map(float, list2_text.split(",")))
score_dict={"Emotion": emotions, "Score": scores}
print(score_dict)
return score_dict
class Summarizer:
def __init__(self):
# openai.api_key=os.getenv("OPENAI_API_KEY")
pass
def generate_summary(self, text):
model_engine = "text-davinci-003"
prompt = f"""summarize the following conversation delimited by triple backticks. write within 30 words.```{text}``` """
completions = client.completions.create(
engine=model_engine,
prompt=prompt,
max_tokens=60,
n=1,
stop=None,
temperature=0.5,
)
message = completions.choices[0].text.strip()
return message
history_state = gr.State()
summarizer = Summarizer()
sentiment = SentimentAnalyzer()
class LangChain_Document_QA:
def __init__(self):
# openai.api_key=os.getenv("OPENAI_API_KEY")
pass
def _add_text(self,history, text):
history = history + [(text, None)]
history_state.value = history
return history,gr.update(value="", interactive=False)
def _agent_text(self,history, text):
response = text
history[-1][1] = response
history_state.value = history
return history
def _chat_history(self):
history = history_state.value
formatted_history = " "
for entry in history:
customer_text, agent_text = entry
formatted_history += f"Patient: {customer_text}\n"
if agent_text:
formatted_history += f"Mental Healthcare Doctor Chatbot: {agent_text}\n"
return formatted_history
def _display_history(self):
formatted_history=self._chat_history()
summary=summarizer.generate_summary(formatted_history)
return summary
def _display_graph(self,sentiment_scores):
df = pd.DataFrame(sentiment_scores)
fig = px.bar(df, x='Score', y='Sentiment', orientation='h', labels={'Score': 'Score', 'Labels': 'Sentiment'})
fig.update_layout(height=500, width=200)
return fig
def _display_graph_emotion(self,customer_emotion_score):
fig = px.pie(customer_emotion_score, values='Score', names='Emotion', title='Emotion Distribution', hover_data=['Score'])
#fig.update_traces(texttemplate='Emotion', textposition='outside')
fig.update_layout(height=500, width=200)
return fig
def _history_of_chat(self):
history = history_state.value
formatted_history = ""
client=""
agent=""
for entry in history:
customer_text, agent_text = entry
client+=customer_text
formatted_history += f"Patient: {customer_text}\n"
if agent_text:
agent+=agent_text
formatted_history += f"Mental Healthcare Doctor Chatbot: {agent_text}\n"
return client,agent
def _suggested_answer(self,history, text):
# try:
history_list = self._chat_history()
try:
file_path = "patient_details.json"
with open(file_path) as file:
patient_details = json.load(file)
except:
pass
prompt = f"""Analyse the patient json If asked for information take it from {patient_details} \
you first get patient details : <get name,age,gender,contact,address from patient> if not match patient json information start new chat else match patient \
json information ask previous: <description,symptoms,diagnosis,treatment talk about patient> As an empathic AI Mental Healthcare Doctor Chatbot, provide effective solutions to patients' mental health concerns. \
first start the conversation ask existing patient or new patient. if new patient get name,age,gender,contact,address from the patient and start. \
if existing customer get name,age,gender,contact,address details and start the chat about existing issues and current issues. \
if patient say thanking tone message to end the conversation with a thanking greeting when the patient expresses gratitude. \
Chat History:['''{history_list}''']
Patient: ['''{text}''']
Perform as Mental Healthcare Doctor Chatbot
"""
response = client.completions.create(
model="text-davinci-003",
prompt=prompt,
temperature=0,
max_tokens=500,
top_p=1,
frequency_penalty=0,
presence_penalty=0.6,
)
message = response.choices[0].text.strip()
if ":" in message:
message = re.sub(r'^.*:', '', message)
history[-1][1] = message.strip()
history_state.value = history
return history
# except:
# history[-1][1] = "How can I help you?"
# history_state.value = history
# return history
def _text_box(self,customer_emotion,customer_sentiment_score):
sentiment_str = ', '.join([f'{label}: {score}' for label, score in zip(customer_sentiment_score['Sentiment'], customer_sentiment_score['Score'])])
#emotion_str = ', '.join([f'{emotion}: {score}' for emotion, score in zip(customer_emotion['Emotion'], customer_emotion['Score'])])
return f"Sentiment: {sentiment_str},\nEmotion: {customer_emotion}"
def _on_sentiment_btn_click(self):
client=self._history_of_chat()
customer_emotion=sentiment.emotion_analysis(client)
customer_sentiment_score = sentiment.analyze_sentiment_for_graph(client)
scores=self._text_box(customer_emotion,customer_sentiment_score)
customer_fig=self._display_graph(customer_sentiment_score)
customer_fig.update_layout(title="Sentiment Analysis",width=800)
customer_emotion_score = sentiment.emotion_analysis_for_graph(customer_emotion)
customer_emotion_fig=self._display_graph_emotion(customer_emotion_score)
customer_emotion_fig.update_layout(title="Emotion Analysis",width=800)
return scores,customer_fig,customer_emotion_fig
def clear_func(self):
history_state.clear()
def gradio_interface(self):
with gr.Blocks(css="style.css",theme='JohnSmith9982/small_and_pretty') as demo:
with gr.Row():
gr.HTML("""<center><img class="image" src="https://www.syrahealth.com/images/SyraHealth_Logo_Dark.svg" alt="Image" width="210" height="210"></center>
""")
with gr.Row():
gr.HTML("""<center><h1>AI Mental Healthcare ChatBot</h1></center>""")
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
chatbot = gr.Chatbot([], elem_id="chatbot")
with gr.Row():
with gr.Column(scale=0.90):
txt = gr.Textbox(show_label=False,placeholder="Patient")
with gr.Column(scale=0.10):
emptyBtn = gr.Button("🧹 Clear")
with gr.Accordion("Conversational AI Analytics", open = False):
with gr.Row():
with gr.Column(scale=0.50):
txt4 =gr.Textbox(
show_label=False,
lines=4,
placeholder="Summary")
with gr.Column(scale=0.50):
txt5 =gr.Textbox(
show_label=False,
lines=4,
placeholder="Sentiment")
with gr.Row():
with gr.Column(scale=0.50, min_width=0):
end_btn=gr.Button(value="End")
with gr.Column(scale=0.50, min_width=0):
Sentiment_btn=gr.Button(value="📊")
with gr.Row():
gr.HTML("""<center><h1>Sentiment and Emotion Score Graph</h1></center>""")
with gr.Row():
with gr.Column(scale=1, min_width=0):
plot =gr.Plot(label="Patient")
with gr.Row():
with gr.Column(scale=1, min_width=0):
plot_3 =gr.Plot(label="Patient_Emotion")
txt_msg = txt.submit(self._add_text, [chatbot, txt], [chatbot, txt]).then(
self._suggested_answer, [chatbot,txt],chatbot)
txt_msg.then(lambda: gr.update(interactive=True), None, [txt])
# txt.submit(self._suggested_answer, [chatbot,txt],chatbot)
# button.click(self._agent_text, [chatbot,txt3], chatbot)
end_btn.click(self._display_history, [], txt4)
emptyBtn.click(self.clear_func,[],[])
emptyBtn.click(lambda: None, None, chatbot, queue=False)
Sentiment_btn.click(self._on_sentiment_btn_click,[],[txt5,plot,plot_3])
demo.title = "AI Mental Healthcare ChatBot"
demo.launch(debug = True)
document_qa =LangChain_Document_QA()
document_qa.gradio_interface() |