File size: 13,452 Bytes
01f29ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb5f283
 
 
 
01f29ca
 
bb5f283
 
 
 
 
 
 
 
 
01f29ca
bb5f283
 
 
 
01f29ca
 
bb5f283
 
 
 
 
01f29ca
bb5f283
 
 
 
 
 
 
 
 
01f29ca
bb5f283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01f29ca
 
bb5f283
01f29ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb5f283
 
 
 
 
 
 
 
 
 
 
 
 
01f29ca
bb5f283
 
 
 
01f29ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb5f283
 
 
 
 
01f29ca
 
 
 
 
 
 
 
bb5f283
 
 
 
 
 
 
01f29ca
bb5f283
01f29ca
bb5f283
 
 
 
01f29ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
# from pydantic import NoneStr
import os
import mimetypes
# import validators
import requests
import tempfile
import gradio as gr
from openai import OpenAI
import re
import json
from transformers import pipeline
import matplotlib.pyplot as plt
import plotly.express as px
import pandas as pd 

client = OpenAI()

class SentimentAnalyzer:
    def __init__(self):
       pass

    def emotion_analysis(self,text):
        # Create a conversation for the OpenAI chat API
        conversation = [
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": f""" Your task is find the top 3 emotion for this converstion {text}: <Sadness, Happiness, Fear, Disgust, Anger> and it's emotion score for the Mental Healthcare Doctor Chatbot and patient conversation text.\
        you are analyze the text and provide the output in the following list format heigher to lower order: ["emotion1","emotion2","emotion3"][score1,score2,score3]''' [with top 3 result having the highest score]
        The scores should be in the range of 0.0 to 1.0, where 1.0 represents the highest intensity of the emotion.
        """}
        ]
        
        # Call OpenAI GPT-3.5-turbo
        chat_completion = client.chat.completions.create(
            model = "gpt-3.5-turbo-1106",
            messages = conversation,
            max_tokens=500,
            temperature=0
        )
        
        response = chat_completion.choices[0].message.content
        return response


    def analyze_sentiment_for_graph(self, text):

        # Create a conversation for the OpenAI chat API
        conversation = [
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": f""" Your task is find the setiments for this converstion {text} : <labels = positive, negative, neutral> and it's sentiment score for the Mental Healthcare Doctor Chatbot and patient conversation text.\
        you are analyze the text and provide the output in the following json format heigher to lower order: '''["label1","label2","label3"][score1,score2,score3]'''
        """}
        ]
        
        # Call OpenAI GPT-3.5-turbo
        chat_completion = client.chat.completions.create(
            model = "gpt-3.5-turbo-1106",
            messages = conversation,
            max_tokens=500,
            temperature=0
        )
        
        response = chat_completion.choices[0].message.content
        return response
        
        # prompt = f""" Your task is find the setiments for this converstion {text} : <labels = positive, negative, neutral> and it's sentiment score for the Mental Healthcare Doctor Chatbot and patient conversation text.\
        # you are analyze the text and provide the output in the following json format heigher to lower order: '''["label1","label2","label3"][score1,score2,score3]'''
        # """
        # response = client.completions.create(
        # model="text-davinci-003",
        # prompt=prompt,
        # temperature=0,
        # max_tokens=60,
        # top_p=1,
        # frequency_penalty=0,
        # presence_penalty=0
        # )

        # Extract the generated text
        sentiment_scores = response
        start_index = sentiment_scores.find("[")
        end_index = sentiment_scores.find("]")
        list1_text = sentiment_scores[start_index + 1: end_index]
        list2_text = sentiment_scores[end_index + 2:-1]
        sentiment = list(map(str.strip, list1_text.split(",")))
        scores = list(map(float, list2_text.split(",")))
        score_dict={"Sentiment": sentiment, "Score": scores}
        print(score_dict)
        return score_dict

    def emotion_analysis_for_graph(self,text):
        start_index = text.find("[")
        end_index = text.find("]")
        list1_text = text[start_index + 1: end_index]
        list2_text = text[end_index + 2:-1]
        emotions = list(map(str.strip, list1_text.split(",")))
        scores = list(map(float, list2_text.split(",")))
        score_dict={"Emotion": emotions, "Score": scores}
        print(score_dict)
        return score_dict


class Summarizer:
    def __init__(self):
        # openai.api_key=os.getenv("OPENAI_API_KEY")
        pass
    def generate_summary(self, text):

        # Create a conversation for the OpenAI chat API
        conversation = [
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": f"""summarize the following conversation delimited by triple backticks. write within 30 words.```{text}``` """}
        ]
        
        # Call OpenAI GPT-3.5-turbo
        chat_completion = client.chat.completions.create(
            model = "gpt-3.5-turbo-1106",
            messages = conversation,
            max_tokens=500,
            temperature=0
        )
        
        response = chat_completion.choices[0].message.content
        return response
        

history_state = gr.State()
summarizer = Summarizer()
sentiment = SentimentAnalyzer()

class LangChain_Document_QA:

    def __init__(self):
        # openai.api_key=os.getenv("OPENAI_API_KEY")
        pass

    def _add_text(self,history, text):
        history = history + [(text, None)]
        history_state.value = history
        return history,gr.update(value="", interactive=False)

    def _agent_text(self,history, text):
        response = text
        history[-1][1] = response
        history_state.value = history
        return history

    def _chat_history(self):
        history = history_state.value
        formatted_history = " "
        for entry in history:
            customer_text, agent_text = entry
            formatted_history += f"Patient: {customer_text}\n"
            if agent_text:
                formatted_history += f"Mental Healthcare Doctor Chatbot: {agent_text}\n"
        return formatted_history

    def _display_history(self):
        formatted_history=self._chat_history()
        summary=summarizer.generate_summary(formatted_history)
        return summary

    def _display_graph(self,sentiment_scores):
        df = pd.DataFrame(sentiment_scores)
        fig = px.bar(df, x='Score', y='Sentiment', orientation='h', labels={'Score': 'Score', 'Labels': 'Sentiment'})
        fig.update_layout(height=500, width=200)
        return fig
    def _display_graph_emotion(self,customer_emotion_score):
        
        fig = px.pie(customer_emotion_score, values='Score', names='Emotion', title='Emotion Distribution', hover_data=['Score'])
        #fig.update_traces(texttemplate='Emotion', textposition='outside')
        fig.update_layout(height=500, width=200)
        return fig
    def _history_of_chat(self):
        history = history_state.value
        formatted_history = ""
        client=""
        agent=""
        for entry in history:
            customer_text, agent_text = entry
            client+=customer_text
            formatted_history += f"Patient: {customer_text}\n"
            if agent_text:
                agent+=agent_text
                formatted_history += f"Mental Healthcare Doctor Chatbot: {agent_text}\n"
        return client,agent


    def _suggested_answer(self,history, text):
      # try:
        history_list = self._chat_history()
        try:
          file_path = "patient_details.json"
          with open(file_path) as file:
              patient_details = json.load(file)
        except:
          pass
            
        # Create a conversation for the OpenAI chat API
        conversation = [
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": f"""Analyse the patient json If asked for information take it from {patient_details} \
            you first get patient details : <get name,age,gender,contact,address from patient> if not match patient json information start new chat else match patient \
            json information ask previous: <description,symptoms,diagnosis,treatment talk about patient> As an empathic AI Mental Healthcare Doctor Chatbot, provide effective solutions to patients' mental health concerns. \
            first start the conversation ask existing patient or new patient. if new patient get name,age,gender,contact,address from the patient and start. \
            if existing customer get name,age,gender,contact,address details and start the chat about existing issues and current issues. \
            if patient say thanking tone message to end the conversation with a thanking greeting when the patient expresses gratitude. \
            Chat History:['''{history_list}'''] 
            Patient: ['''{text}''']
            Perform as Mental Healthcare Doctor Chatbot
                 """}
        ]
        
        # Call OpenAI GPT-3.5-turbo
        chat_completion = client.chat.completions.create(
            model = "gpt-3.5-turbo-1106",
            messages = conversation,
            max_tokens=500,
            temperature=0
        )
        
        response = chat_completion.choices[0].message.content
        
        if  ":" in response:
          message = re.sub(r'^.*:', '', message)
        history[-1][1] = message.strip()
        history_state.value = history
        return history
      # except:
      #   history[-1][1] = "How can I help you?"
      #   history_state.value = history
      #   return history


    def _text_box(self,customer_emotion,customer_sentiment_score):  
        sentiment_str = ', '.join([f'{label}: {score}' for label, score in zip(customer_sentiment_score['Sentiment'], customer_sentiment_score['Score'])])
        #emotion_str = ', '.join([f'{emotion}: {score}' for emotion, score in zip(customer_emotion['Emotion'], customer_emotion['Score'])])
        return f"Sentiment: {sentiment_str},\nEmotion: {customer_emotion}"

    def _on_sentiment_btn_click(self):
        client=self._history_of_chat()

        customer_emotion=sentiment.emotion_analysis(client)
        customer_sentiment_score = sentiment.analyze_sentiment_for_graph(client)

        scores=self._text_box(customer_emotion,customer_sentiment_score)

        customer_fig=self._display_graph(customer_sentiment_score)
        customer_fig.update_layout(title="Sentiment Analysis",width=800)

        customer_emotion_score = sentiment.emotion_analysis_for_graph(customer_emotion)

        customer_emotion_fig=self._display_graph_emotion(customer_emotion_score)
        customer_emotion_fig.update_layout(title="Emotion Analysis",width=800)
        return scores,customer_fig,customer_emotion_fig


    def clear_func(self):
      history_state.clear()

    def gradio_interface(self):
      with gr.Blocks(css="style.css",theme='JohnSmith9982/small_and_pretty') as demo:
          with gr.Row():
            gr.HTML("""<center><img class="image" src="https://www.syrahealth.com/images/SyraHealth_Logo_Dark.svg" alt="Image" width="210" height="210"></center>
            """)
          with gr.Row():
               gr.HTML("""<center><h1>AI Mental Healthcare ChatBot</h1></center>""")
          with gr.Row():
              with gr.Column(scale=1):
                  with gr.Row():
                      chatbot = gr.Chatbot([], elem_id="chatbot")
                  with gr.Row():
                      with gr.Column(scale=0.90):
                          txt = gr.Textbox(show_label=False,placeholder="Patient")
                      with gr.Column(scale=0.10):
                          emptyBtn = gr.Button("🧹 Clear")

          with gr.Accordion("Conversational AI Analytics", open = False):
              with gr.Row():
                  with gr.Column(scale=0.50):
                      txt4 =gr.Textbox(
                          show_label=False,
                          lines=4,
                          placeholder="Summary")
                  with gr.Column(scale=0.50):
                      txt5 =gr.Textbox(
                          show_label=False,
                          lines=4,
                          placeholder="Sentiment")
              with gr.Row():
                  with gr.Column(scale=0.50, min_width=0):
                      end_btn=gr.Button(value="End")
                  with gr.Column(scale=0.50, min_width=0):
                      Sentiment_btn=gr.Button(value="📊")
              with gr.Row():
                  gr.HTML("""<center><h1>Sentiment and Emotion Score Graph</h1></center>""")
              with gr.Row():
                  with gr.Column(scale=1, min_width=0):
                      plot =gr.Plot(label="Patient")
              with gr.Row():
                  with gr.Column(scale=1, min_width=0):
                      plot_3 =gr.Plot(label="Patient_Emotion")


          txt_msg = txt.submit(self._add_text, [chatbot, txt], [chatbot, txt]).then(
        self._suggested_answer, [chatbot,txt],chatbot)
          txt_msg.then(lambda: gr.update(interactive=True), None, [txt])
          # txt.submit(self._suggested_answer, [chatbot,txt],chatbot)
          # button.click(self._agent_text, [chatbot,txt3], chatbot)
          end_btn.click(self._display_history, [], txt4)
          emptyBtn.click(self.clear_func,[],[])
          emptyBtn.click(lambda: None, None, chatbot, queue=False)

          Sentiment_btn.click(self._on_sentiment_btn_click,[],[txt5,plot,plot_3])
 
      demo.title = "AI Mental Healthcare ChatBot"
      demo.launch(debug = True)
document_qa =LangChain_Document_QA()
document_qa.gradio_interface()